Skip to main content
Log in

Isolation and characterization of clonal vascular smooth muscle cell lines from spontaneously hypertensive and normotensive rat aortas

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Vascular smooth muscle cells were isolated from the aortas of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats by use of the explant method on collagen gels. Clonal cell lines derived from these enriched populations possessed ultrastructural characteristics of vascular smooth muscle cells in culture; they grew in hill and valley configuration, immunostained with the muscle actin antibody HHF35, and failed to react with von Willebrand Factor VIII antibody. Fourteen clonal cell lines were characterized for growth and ligand binding characteristics. Large variations in growth rate and cell density at saturation were exhibited by clones of both strains. Similar variability was noted for specific binding of endothelial 1 and Sar1,Ile8-angiotensin II to their receptors, indicating considerable phenotypic heterogeneity among the clonal cell lines. Six selected clones were further characterized for angiotensin II receptor linkage to G proteins. Cells of both strains exhibited comparable affinity shifts in the presence of GTPγS. These clonal cell lines should be useful for a variety of analyses of the comparative biology of aortic cells. It is possible that the diversity of phenotypic traits exhibited by these clones reflects the heterogeneity of vascular smooth muscle tissue found in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absher, M.; Woodcock-Mitchell, J.; Mitchell, J., et al. Characterization of vascular smooth muscle cell phenotype in long-term culture. In Vitro Cell. Dev. Biol. 25:183–192; 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Berecek, K. H.; Schwertschlag, U.; Gross, F. Alterations in renal vascular resistance and reactivity in spontaneous hypertension of rats. Am. J. Physiol. 238:H287-H293; 1980.

    PubMed  CAS  Google Scholar 

  3. Berk, B. C.; Vallega, G.; Muslin, A. J., et al. Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na+/H+ exchange. J. Clin. Invest. 83:822–829; 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Björkerud, S.; Gustavsson, K.; Hasselgren, M.In vitro cultivation of rabbit aortic media and the development of the cultures in relation to heterogeneity. Acta Pathol. Microbiol. Immunol. Scand. A. 92:113–124; 1984.

    PubMed  Google Scholar 

  5. Bolzon, B. J.; Cheung, D. W. Isolation and characterization of single vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 14:137–144; 1989.

    PubMed  CAS  Google Scholar 

  6. Chamley-Campbell, J.; Campbell, G. R.; Ross, R. The smooth muscle cell in culture. Physiol. Rev. 59:1–61; 1979.

    PubMed  CAS  Google Scholar 

  7. Chen, C. H.; Chen, S. C. Cell growth factor activity. Exp. Cell. Res. 136:43–51; 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Clegg, K.; Eggena, P.; Barrett, J. D., et al. Smooth muscle cell growth ratein vitro and hyperplasia in the aorta of the spontaneously hypertensive rat. J. Hypertens. 4(suppl 3):S101-S103; 1986.

    Google Scholar 

  9. Cole, O. F.; Fan, T. P. D.; Lewis, G. P. Isolation, characterization, growth and culture of endothelial cells from the rat aorta. Cell Biol. Intl. Rep. 10:399–405; 1986.

    Article  CAS  Google Scholar 

  10. Collis, M. G.; Vanhoutte, P. M. Vascular reactivity of isolated perfused kidneys from male and female spontaneously hypertensive rats. Circ. Res. 41:759–767; 1977.

    PubMed  CAS  Google Scholar 

  11. De Lean, A.; Ong, H.; Gutkowska, J., et al. Evidence for agonist-induced interaction of angiotensin receptor with a guanine nucleotidebinding protein in bovine adrenal zona glomerulosa. Mol. Pharmacol. 26:498–508; 1984.

    PubMed  Google Scholar 

  12. Geisterfer, A. T.; Peach, M. J.; Owens, G. K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ. Res. 62:749–756; 1988.

    PubMed  CAS  Google Scholar 

  13. Hadrava, V.; Tremblay, J.; Hamet, P. Abnormalities in growth characteristics of aortic smooth muscle cells in spontaneously hypertensive rats. Hypertension 13:589–597; 1989.

    PubMed  CAS  Google Scholar 

  14. Hall, M. M.; Khosla, M. C.; Khairallah, P. A., et al. Angiotensin analogs: the influence of sarcosine substituted in position 1. J. Pharmacol. Exp. Ther. 188:222–228; 1974.

    PubMed  CAS  Google Scholar 

  15. Jazayeri, A.; Meyer, W. J. Beta-adrenergic receptor differences in cultured arterial smooth muscle cells between spontaneously hypertensive and Wistar-Kyoto rats. J. Hypertens. 7:895–900; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Jones, W.; Hosick, H. L. Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen lattice culture. Cell Biol. Intl. Rep. 10:277–286; 1986.

    Article  CAS  Google Scholar 

  17. Kimes, B. W.; Brandt, B. L. Characterization of two putative smooth muscle cell lines from rat thoracic aorta. Exp. Cell Res. 98:349–366; 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Lees, M. B.; Paxman, S. Modification of the Lowry procedure for the analysis of proteolipid protein. Anal. Biochem. 47:184–192; 1972.

    Article  PubMed  CAS  Google Scholar 

  19. McGuire, P. G.; Orkin, R. W. Isolation of rat aortic endothelial cells by primary explant techniques and their phenotypic modulation by defined substrata. Lab. Invest. 57:94–105; 1987.

    PubMed  CAS  Google Scholar 

  20. Miyauchi, T.; Ishikawa, T.; Ttomobe, T., et al. Characteristics of pressor response to endothelin in spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 14:427–434; 1989.

    PubMed  CAS  Google Scholar 

  21. Munson, P. J.; Rodbard, D. Ligand: a versatile computerized approach to characterization of ligand binding systems. Anal. Biochem. 107:220–221; 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Owens, G. K. Influence of blood pressure on development of aortic medial smooth muscle hypertrophy in spontaneously hypertensive rats. Hypertension 9:178–187; 1987.

    PubMed  CAS  Google Scholar 

  23. Paglin, S.; Stukenbrok, H.; Joyce, N. C., et al. Interaction of angiotensin II with functional smooth muscle cells in culture. Am. J. Physiol. 253:C872-C882; 1987.

    PubMed  CAS  Google Scholar 

  24. Peterson, G. L. A simplification of the protein assay method of Lowry,et al. which is more generally applicable. Anal. Biochem. 83:346–356; 1977.

    Article  PubMed  CAS  Google Scholar 

  25. Resnik, T. J.; Scott-Burden, T.; Baur, U., et al. Enhanced responsiveness to angiotensin II in vascular smooth muscle cells from spontaneously hypertensive rats is not associated with alterations in protein kinase C. Hypertension 14:293–303; 1989.

    Google Scholar 

  26. Scanlon, M. N.; Koziarz, P.; Moore, G. J. The relationship between homotropic and heterotropic cooperativity for angiotensin receptors in smooth muscle. Gen. Pharmacol. 21:59–65; 1990.

    PubMed  CAS  Google Scholar 

  27. Schiffrin, E. L.; Thome, F. S.; Genest, J. Vascular angiotensin II receptors in SHR. Hypertension 6:682–688; 1984.

    PubMed  CAS  Google Scholar 

  28. Schor, S. L.; Schor, A. M. Clonal heterogeneity in fibroblast phenotype: implications for the control of epithelial-mesenchymal interactions. Bioessays 7:200–204; 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Socorro, L.; Vallega, G.; Nunn, A., et al. Vascular smooth muscle cells from the milan hypertensive rat exhibit decreased functional angiotensin II receptors. Hypertension 15:591–599; 1990.

    PubMed  CAS  Google Scholar 

  30. Somlyo, A. P.; Somlyo, A. V. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol. Rev. 24:197–272; 1968.

    Google Scholar 

  31. Tsukada, T.; Tippens, D.; Gordon, D., et al. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Am. J. Pathol. 126:51–60; 1987.

    PubMed  CAS  Google Scholar 

  32. Wagner, D. D.; Olmsted, J. B.; Marder, V. J. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J. Cell Biol. 95:355–360; 1982.

    Article  PubMed  CAS  Google Scholar 

  33. Wright, G. B.; Alexander, R. W.; Ekstein, L. S., et al. Sodium, divalent cations, and guanine nucleotides regulate the affinity of the rat mesenteric artery angiotensin II receptor. Circ. Res. 50:462–469; 1982.

    PubMed  CAS  Google Scholar 

  34. Wright, J. W.; Jensen, L. L.; Cushing, L. L., et al. Heightened blood pressure responsiveness to intracarotid infusion of angiotensins in the spontaneously hypertensive rat. Pharmacol. Biochem. Behav. 30:343–346; 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Yamori, Y.; Igawa, T.; Kanbe, T., et al. Mechanisms of structural vascular changes in genetic hypertension: analyses on cultured vascular smooth muscle cells from spontaneously hypertensive rats. Clin. Sci. 61:121s-123s; 1981.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, K.L., Harding, J.W. & Hosick, H.L. Isolation and characterization of clonal vascular smooth muscle cell lines from spontaneously hypertensive and normotensive rat aortas. In Vitro Cell Dev Biol - Animal 27, 791–798 (1991). https://doi.org/10.1007/BF02631245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631245

Key words

Navigation