
I. STOCHASTIC RUNGE-KUTTA ALGORITHM

To validate the analytical preditions presented in the main manuscript, a numerical

approach was utilized. As the source of noise was modeled as having a non-delta auto-

correlation function, special consideration must be taken to ensure that all numerical simu-

lations replicate this property. To that end, a second order stochastic Runge-Kutta algorithm

that demonstrates a similar exponential auto-correlation property was utilized. [1]. This

algorithm solves a paired set of stochastic differential equations that produces the desired

auto-correlation property. (See Supplemental Figure 1)

As the models presented are in the form of stochastic differential equations, individual

solution trajectories may vary greatly (See Supplemental Figure 2). Therefore, to validate

the analytically derived probability distribution functions (PDFs), a statistical ensemble

of solutions were generated for each parameter set. Unless otherwise noted, all ensembles

consisted of 50,000 individual solutions, C0 = 1, and time steps of 0.001 seconds. Given

these statistical ensembles, histograms of numerically obtained distributions were compared

to their corresponding analytical solutions (See Supplemental Figures 3, 4). All simulations

were performed using compiled C++ code on Intel architecture. Histograms and analytical

solutions were produced using R.

II. ADDITIONAL DERIVATIONS

A. Cl

We compute the average of Cl by using Γ = ln (Cl/C0) (i.e. Cl = C0e
Γ) and thus

dCl = dΓCl = dΓC0e
Γ as follows:

〈Cl〉 =

∫
dClClp(Cl)

=

∫
dCl

1

2
√
αtπ

exp [− [lnCl/C0]2

4αt
]

=
1

2
√
αtπ

∫
dΓC0 exp [Γ] exp [− Γ2

4αt
]

=
1

2
√
αtπ

C0

∫
dΓ exp [− [Γ− 2αt]2

4αt
] exp [αt]

= C0e
αt (1)
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For the dispersion ∆Cl, we compute 〈C2
l 〉 following the similar steps as above:

〈C2
l 〉 =

∫
dClC

2
l p(Cl)

=

∫
dClCl

1

2
√
αtπ

exp [− [lnCl/C0]2

4αt
]

=
1

2
√
αtπ

∫
dΓC2

0 exp [2Γ] exp [− Γ2

4αt
]

=
1

2
√
αtπ

C2
0

∫
dΓ exp [− [Γ− 4αt]2

4αt
] exp [4αt]

= C2
0e

4αt (2)

Thus,

∆Cl =
√
〈C2

l 〉 − 〈Cl〉2 = C0

√
e4αt − e2αt ≈ C0e

2αt, (3)

where again C0 = C(t = 0) is the initial value of C at t = 0.

B. Cn

It is interesting first to find out the average population 〈Cn〉 in the limits of large and

small β, corresponding to small and large stochastic noises gc, respectively. To obtain the

mean value of Cn, we use

〈Cn〉 =

∫ ∞
0

dCnP [Cn]Cn

=

∫ ∞
−A

dzP [z]Cn

=

∫ ∞
−A

dzP [z]
1

z + A

= N

∫ ∞
−A

dz exp
[
−βz2

] 1

z + A
. (4)

where N−1 =
∫∞
−A dzP [z] and A = e−γt/C(0) + ε

γ
[1− e−γt]: Note that we used dCnP [Cn] =

dzP [z] and the formulation for 〈z2〉.

First, in the limit of β → ∞ (ξ → 0), we evaluate Eq. (4) to leading order in 1/β by
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using the variable w =
√
βz as follows:

〈Cn〉 = N

∫ ∞
−
√
βA

dw√
β

exp
[
−w2

] 1
w√
β

+ A

∼
√
β

π

∫ ∞
−∞

dw√
β

exp
[
−w2

] 1

A

=
1

A
=

1

e−γt/C(0) + ε
γ
[1− e−γt]

, (5)

where N−1 ∼
√

π
β

for β � 1 is used. In the limit of large t→∞, Eq. (5) simplies as

〈Cn〉 → γ/ε,

which recovers the result in a deterministic logistic system without a stochastic regulation

(β → ∞) where C saturates to its carrying capacity C∗ = γ/ε. This carrying capacity

C∗ obviously diverges when ε → 0 as a deterministic logistic system is solely governed by

a linear term with an exponentially growing solution. This can be seen from Eq. (5) by

taking ε = 0: 〈Cn〉 = C(0)eγt.

In the opposite limit of β → 0 (ξ →∞) and A� 1, the integrand in Eq. (4) diverges at

the low limit of the integration. To isolate the divergence, we let

〈Cn〉 = NI,

I =

∫ ∞
0

dy exp
[
−β(y − A)2

]1
y

=

∫ ∞
0

dx exp
[
−φ(x− 1)2

]1

x

N−1 =

∫ ∞
−A

dz exp
[
−βz2

]
∼ 1

2

√
π

β
(6)

where y = z + A, φ = βA2, x = y/A, and y(0) = 1/C(0) were used. Note that φ becomes

small as β and A decrease, approaching

φ→ ε2

γD

for large time. As can be seen from above, when the coherent self-regulation (ε) is dominated

by a linear growth (γ) and by the stochastic self-regulation (D) (i.e. as φ→ 0), the integral

for I in Eq. (6) can blow up. To isolate the divergence in I for small φ to leading order
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in φ, we differentiate I with respect to φ to obtain the following differential equation for

I = I(φ):

∂φI = −
∫ ∞

0

dx
(x− 1)2

x
exp

[
−φ(x− 1)2

]
=

∫ ∞
0

dx

[
(−x+ 2)− 1

x

]
exp

[
−φ(x− 1)2

]
≡ −G(φ)− I. (7)

Here,

G(φ) =

∫ ∞
0

dx(x− 2) exp
[
−φ(x− 1)2

]
. (8)

Since G(φ) in Eq. (8) contains no singularity in the integrand as φ → 0, it can easily be

computed to leading order in φ� 1 by using x = χφ−1/2 as follows:

G(φ) =

∫ ∞
0

dx(x− 2) exp
[
−φ(x− 1)2

]
=

1

φ

∫ ∞
0

dχ(χ− 2
√
φ) exp

[
−(χ2 − 2

√
φχ+ φ)

]
∼ 1

φ

∫ ∞
0

dχχ exp [−χ2] +O(
√
φ)

=
1

2φ
+O(

√
φ). (9)

Thus, by using G(φ) in Eq. (9) in the differential equation for I(φ) in Eq. (7), we obtain

∂φI + I ∼ − 1

2φ
, (10)

with the solution

I(φ)eφ − I(φ0)eφ0 ∼ −1

2
ln [φ/φ0], (11)

where φ0 � 1 is the content value. Thus,

I(φ) ∼ −1

2
[lnφ]eφ ∼ −1

2
lnφ (12)

to leading order in φ� 1. Therefore, when φ→ 0, 〈Cn〉 becomes

〈Cn〉 ∼ −
√
β

π
lnφ

∼ −
√
β

π
ln [βA2]. (13)
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In the limit of large time t→∞, Eq. (13) becomes

〈Cn〉 ∝ −
√
β

π
ln

[
ε2

γD

]
.

Thus, the RHS of Eq. (13) approaches +∞ as ε→ 0, leading to an unbounded growth.

To show how this unbounded growth proceeds in time, we evaluate Eq. (13) by using

A = 1/C0e
γt for ε/γ = 0 as:

〈Cn〉 ∼ −
√
β

π
ln [βC−2

0 e−2γt] ∼
√
β

π
2γt, (14)

for t � ln (C0/
√
β) [as required for φ � 1]. Thus, in the absence of the coherent self-

regulation ε = 0, the stochastic regulation leads to a linearly growing average population

〈Cn〉 in time. This unbounded growth reflects the fact that the stochastic self-regulation

alone is not sufficiently effective in regulating growth to finite amplitude.
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