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 6 
S1 Model description 7 
To generate the species size distribution presented in Fig. 1 of the main text we used 8 

the model described in the original theory paper of self-organized similarity  [13]. The 9 
only difference is that we now use a finite niche axis (the original model mostly used a 10 
circular niche axis to exclude edge effects), and assume extinction probabilities to be 11 
larger at the edges of the niche axis than in the centre. Here is a summary of the model.  12 
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  i = 1, 2, ..n; αi,i = 1   15 
 16 
Where Ni is the density of the species i, r is the maximum per capita growth rate, Ki is 17 

the carrying capacity of species i, and αi,j is the competition coefficient scaling the effect 18 
of species j on species i. The effect of density dependent regulation by parasites, disease 19 
or predators is included by the last term in the equation assuming losses to increase (up to 20 
a maximum g) when population density exceeds a threshold (H). 21 

To compute competition coefficients that allow us to mimic competition of species for 22 
resources along a niche axis (Eq. 1) we characterize the width of the niche by normal 23 
distributions on the niche axis (L): 24 
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We assume that competition intensity between species i and species j is related to 26 
niche overlap, and thus to the probability P that individuals of the two species are at the 27 
same position on the niche axis, which is the product of both probabilities, and for a finite 28 
linear niche axis of length Lmax becomes: 29 
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and the competition coefficients are computed as: 31 
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 33 
Time in the model is scaled in units of r (so r=1) and the carrying capacity K is set 34 

default to 10.  We used a fourth order Runga-Kutta solver as implemented in MATLAB.  35 
For our  simulations five hundred species were assigned randomly (following a uniform 36 
distribution) to a certain position (μi) on the niche axis, each with the same niche width 37 
(standard deviation  σ = 0.0475). 38 

 39 
To mimic evolution, each species iterates its position on the niche axis each 1000 time 40 

steps to increase its 'fitness'. The 'fitness' of the species is defined as the inverse of the 41 
carrying capacity that an invader would need to invade successfully which can be 42 
computed from the condition for positive growth at low initial density [2]: 43 
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The evolutionary step-size is set to 0.01 niche units and the species move on the niche 45 
axis in the direction where their fitness increases. In addition we allow for a stochastic 46 
extinction 500 time steps after each evolutionary time step where extinction probabilities, 47 
following cosine function that is scaled to have an extinction probability of 0 in the centre 48 
and Pmax at the edges of the niche axis (at Li=0 and Li=Lmax): 49 
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To keep the total number of species constant we re-initiate species (the same number 51 
of species that went extinct) on random position on the niche axis. 52 
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S2 Analysis of multimodality 57 
To detect multiple modes in the frequency distributions of body lengths we fitted 58 

Gaussian distributions through latent class analysis using the ‘gmdistribution’ function 59 
from the MATLAB statistics toolbox (MATLAB version R2011a). The use of such ‘finite 60 
mixture models’ is a good solution in situations where observations may come from 61 
different components - in our case different modes along the abundance distributions - 62 
and where it is unknown which group each observation belongs to. Latent Class analysis 63 
consists of fitting a model with a certain number of components (here Gaussian 64 
distributions) by maximizing the likelihood of data using the Expectation Maximization 65 
(EM) algorithm. As the EM algorithm is an iterative method that might find local 66 
(suboptimal) minima, we fitted each model 20 times with different initial guesses. To find 67 
the optimal number of components, we fit series of finite mixture models with increasing 68 
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number of components (1-10), determining which number of components best explains 69 
observed data based on the minimum Akaike Information Criterion (AIC, see tables 70 
below).  71 

A general background on this class of statistics can be found for instance in: 72 
McLachlan, G., and D. Peel, Finite Mixture Models, John Wiley & Sons, New York, 73 
2000. The kernel density estimate curves (Gaussian kernel, band width 0.06) we give 74 
represent a kind of weighted running averages to provide a visual check of the number of 75 
modes. 76 
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 77 
Table 1. Akaike Information Criterion values for models with different number of modes 78 
(1-10) for each region. The optimal numbers of clusters (with the lowest AIC value) are 79 
represented in bold, the other values are the differences with the optimum AF= 80 
Afrotropic, PL = Palearctic (incl all of China), NT = Neotropic (South and Central 81 
America); OR= Orientalis (also Indomalaya, roughly India, S.E. Asia); AU = Australasia; 82 
NA = Nearctic (US and Canada); North= NA+PL; South=AF+NT+OR+AU,  and Total = 83 
all data. 84 

N 

clusters 

AF PL NT OR AU NA North South Total 

1 +375 +195 +161 +190 +60 +77 +257 +631 +627 

2 +146 +127 +56 +80 +21 +57 +160 +295 +279 

3 +67 +96 +15 +17 +14 +33 +106 +100 +90 

4 +7 +31 +2 +1 +0 +9 +30 +10 +3 

5 1995 +11 +1 983 690 939 +13 5365 7757 

6 +6 +6 1546 +10 +3 +0 +14 +2 +6 

7 +9 1816 +12 +16 +6 +4 +1 +3 +6 

8 +6 +1 * +22 +10 +10 2660 +8 +13 

9 +5 +7 * +19 +12 +12 +5 +15 +19 

10 +11 +10 * +18 +10 +22 +11 +14 +19 

*= failed to converge 85 

86 
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Table 2. Positions of the modes for each of the clusters for the optimal model according 87 
to the Akaike Information Criterion for each region. AF= Afrotropic, PL = Palearctic (incl 88 
all of China), NT = Neotropic (South and Central America); OR= Orientalis (also 89 
Indomalaya, roughly India, S.E. Asia); AU = Australasia; NA = Nearctic (US and 90 
Canada); North= NA+PL; South=AF+NT+OR+AU, and Total = all data. 91 

Cluster 

No. 

AF PL NT OR AU NA North South Total 

1 0.833 0.669 0.615 0.559 1.01 0.626 0.673 0.728 0.694 

2 1.4 0.942 0.997 1.32 1.5 1.32 0.952 1.44 1.35 

3 1.76 1.21 1.37 1.59 1.85 2.07 1.19 1.85 1.63 

4 2.59 1.5 1.8 2.53 2.46 2.69 1.48 2.49 2.53 

5 3.46 2.1 2.38 3.3 3.25 3.36 1.79 3.35 3.36 

6  2.69 3.28    2.09   

7  3.33     2.69   

8       3.35   

 92 
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