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ZU KIEL



Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Surrogate-Based Optimization of Climate Model
Parameters Using Response Correction

M. Prieß, S. Koziel, T. Slawig

Bericht Nr. 1104
March 30, 2011

e-mail: mpr@informatik.uni-kiel.de, koziel@ru.is,
ts@informatik.uni-kiel.de



Surrogate-Based Optimization of Climate Model Parameters Using
Response Correction

M. Prießa,1,∗, S. Kozielb, T. Slawiga

aInstitute for Computer Science, Cluster The Future Ocean, Christian-Albrechts Universität zu Kiel, 24098 Kiel, Germany
bEngineering Optimization & Modeling Center, School of Science and Engineering, Reykjavik University, Menntavegur 1, 101

Reykjavik, Iceland

Abstract

We present a computationally efficient methodology for the optimization of climate model parameters applied

to a (one-dimensional) representative of a class of marine ecosystem models. We use a response correction

technique to create a surrogate from a temporarily coarser discretized physics-based low-fidelity model.

We demonstrate that replacing the direct parameter optimization of the high-fidelity ecosystem model by

iteratively updating and re-optimizing the surrogate leads to a very satisfactory solution while yielding

significant cost saving - about 84% when compared to the direct high-fidelity model optimization.

Keywords: Climate models, marine ecosystem models, surrogate-based optimization, parameter

optimization, response correction

1. Introduction

In this paper we present the application of a Surrogate-based Optimization approach, based on a multiplicative

response correction, on parameter identification problems in a climate model.

Surrogate-based optimization [1–4] is a methodology to efficiently optimize complex, so-called high-fidelity

models, that require substantial computational effort already for a model evaluation. High-fidelity models

are typically evaluated through computer simulation and evaluation times of several hours, days or even

weeks are not uncommon. As a consequence, optimization and control problems for such models are often

still beyond the capability of modern numerical algorithms and computer power. The idea of surrogate-based

optimization is to replace the high-fidelity in focus by a computationally cheaper and yet reasonably accurate

representation, so-called surrogate. The surrogate can be created by approximating sampled high-fidelity

model data or by employing a physically-based low-fidelity or coarse model. In this work, we use the latter

approach. The coarse model is normally less accurate, therefore, it has to be iteratively corrected by suitable

methods. The correction (or alignment) can be realized using a limited number (in many cases, only one)
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evaluations of the high-fidelity model and possibly also its derivatives. Surrogate-based optimization is widely

and very successfully used in engineering sciences, compare [1–4]. The application on parameter optimization

in climate models is rather new.

Climate models are typically given as time-dependent partial differential or differential algebraic equations

(PDEs/DAEs) [5–7]. Since the number of processes that have to be included and the needed temporal and

spatial resolution is quite high, so is the computational effort. As a result, many processes on small temporal

or spatial scales are, as denoted in the climate community, parameterized, i.e., they are represented by

simpler models that usually include a number of parameters that have to be properly chosen or adjusted.

A typical example – not only used in climate models for ocean or atmosphere simulations – is turbulence

modeling [8]. There are also processes in the climate system where even without much simplification several

quantities or parameters are unknown or very difficult to measure. This is for example the case for growth

and dying rates in marine ecosystem models [9, 10], one of which is taken as a test case for the surrogate-

based optimization approach we analyze in this paper. Marine ecosystem models describe photosynthesis

and other biogeochemical processes in the marine ecosystem that are important, e.g., to compute and predict

the oceanic uptake of carbon dioxide (CO2) as part of the global carbon cycle [9].

The aim of parameter optimization is to adjust or identify the model parameters so that the model

output fits given measurement data [11]. The mathematical task thus can be classified as a least-squares

type optimization or inverse problem [12]. The number of optimization parameters range from about 10

to 100 discrete real-valued ones in marine ecosystem models (where they are growth and dying rates etc.)

up to distributed functions (or thousands and more discrete values after discretization), for example when

an initial model state or boundary condition is unknown and target of the optimization. The optimization

parameters and the model state are coupled by the constraint of the time-dependent PDE, i.e., the climate

model. Additionally, constraints on the parameters (e.g., non-negativity of growth-rates in ecosystem models

etc.) and on the state variables (non-negativity of concentrations of biological species as algae etc. or of

temperature) might be given.

This optimization process requires a substantial number of (typically expensive) function and optionally

sensitivity or gradient or even Hessian matrix evaluations. If the latter are computed by finite difference

approximations, the critical quantity determining the computational effort of the optimization is that of the

cost function evaluation, which is basically a single model simulation. Hence, decreasing the effort related

to the function evaluations (or, equivalently, cutting down the number of function calls necessary to find

the optimum) is of primary importance to reduce the overall optimization cost. This becomes particularly

significant for computationally expensive three-dimensional coupled models, as for example global climate

models [7].

In this paper we analyze the application of a multiplicative response correction technique to create a

surrogate for one specific type of a climate model, a one-dimensional marine ecosystem model that uses

pre-computed ocean circulation data [13]. This model was chosen because here extensive optimization runs
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with different methods including local, gradient-based and so-called global, genetic algorithms have been

performed, see [14]. The underlying physically-based low-fidelity model is obtained from a temporarily coarser

discretization of the high-fidelity one. We verify our approach by using synthetic target data and by comparing

the results of surrogate-based optimization to those obtained from the direct fine model optimization. The

application on real data is performed as a next step. Furthermore, this exemplary application shall serve as

a test for three-dimensional model runs, which are much more costly with respect to computing time.

The structure of the paper is as follows: The general form of climate models and the parameter optimiza-

tion problem considered is described in Section 2. We point out that the mathematical formulation of the

climate models we use is quite general, such that our approach is not limited to them but remains applicable

for a wide range of time-dependent models. We first recall the basic idea of surrogate-based optimization

in Section 3. The ecosystem model, which is taken as an example in this paper, is introduced in Section

4, and its low-fidelity counterpart that we use as a basis for the surrogate is described in Section 5. The

response correction, the construction of the surrogate model and the quality of the surrogate are described

and analyzed in Section 6. The setup of the optimization which is used to compare the results is given in

Section 7. Numerical results and discussion of an exemplary test run are provided in Section 8. Section 9

concludes the paper with a summary and an outlook.

2. Model Equations and Optimization Problem

In this section we give the formulations of what we call a model and of the corresponding parameter opti-

mization problem. Our formulations are quite general and appropriate for a big class of applications, for

which climate models are only one example.

2.1. Continuous and discrete Model Formulation

We start from an initial boundary value problem (IBVP) for a system of time-dependent partial differential

or differential algebraic equations (PDEs/DAEs) of the following form:

E
∂y

∂t
= f(y, u) in Ω× (0, T )

y(x, 0) = yinit(x) in Ω

y(x, t) = ybdr(x, t) on ∂Ω× (0, T ).

 (1)

Here y is the vector of the state variables, and E is a matrix with the size of y, typically being the identity

matrix for a PDE while having rank deficiency for a DAE [15]. We include DAEs in this formulation since in

climate models, e.g., ocean circulation models, the Navier-Stokes equations [16] are an important part, and

– after space discretization – take the form of a DAE system. Then y may for example consist of velocity

field, pressure, temperature and salinity. In our example of a marine ecosystem model (which is formulated

as PDE system), the matrix E can be set to the identity and thus omitted. In this case the state vector y

contains all relevant biogeochemical tracers as phyto- and zooplankton etc., see Section 4 for the details.
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