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1. Analytical approximation of the metapopulation model

Here we detail how we derived the analytical approximation of the
metapopulation model, by first considering the within-patch dynamics and then
nesting these within-patch dynamics in a metapopulation framework.

Nested analytical approximation: within-patch dynamics

To derive the deterministic analytical approximation of the full metapopulation
model, we first make the simplifying assumption that all patches are identical,
and therefore y; = 1/N Vi. Because the influx of infected cells into a patch from
the latent reservoir is small (see Table 1), if the influx rate of infected cells into a
patch from the blood is also sufficiently small, once a patch has been colonized
by infected cells we can neglect the effects of further entry of infected cells on the



subsequent within-patch dynamics. The within-patch dynamics can now be
described by the following set of equations, where 7 is the time since a patch
was initially colonized:
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Assuming the patch contains no infected cells and is at equilibrium before
colonization, initial conditions are given by the disease free equilibrium

x(0) = x™** y(0) = 0, and z(0) = ¢ z™**/(c + €). Upon colonization by a single
infected cell, y(0) — 1. In a deterministic framework the number of infected cells
cannot fall to zero, so we impose the condition that if the number of infected cells
falls below one then no further infection can take place and that egress of CTLs
from the patch resumes. The within-patch dynamics described by Eqs S1.1-S1.3
exhibit one of three qualitatively distinct outcomes (i) a within-patch burst of
infection fails to establish; (ii) a short-lived burst of infection followed by local
extinction of infected cells; or (iii) a burst of infection followed by the
establishment of a stable endemic state (Fig 3).

Based on Eqgs S1.1 - S1.3, a within-patch burst of infection will fail to establish
(outcome (i)) if the reproduction number of the virus when the patch is initially

colonized, Ri,;: = B (1 — /1)/(5 + e+ k(cTCe))’ is less than 1. In the presence of

infected cells, the number of CTLs within a patch will monotonically increase
until the maximum number of CTLs, zm%, is reached. A non-zero endemic state
will be established (outcome (iii)) if the reproduction number of the virus when
the strength of the immune response within the patch is at a maximum,

Rendgemic = B (1 —2)/(8 + € + k) is greater than or equal to 1. In all other cases,
a short-lived epidemic will occur (outcome (ii)).

Nested analytical approximation: metapopulation dynamics

Next, we nest the within-patch dynamics within a metapopulation framework
using a next-generation approach, an established approach in epidemiological
modeling [1-3], so that we can describe the dynamics of the metapopulation as a
whole.

The first step is to write an ordinary differential equation for the number of
infected cells in the blood at time t:
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where Y (t) is the total number of infected cells summed across all the patches.
We can also write an equation for the size of the reservoir, L(t):
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The next step is to find an expression for Y (t). Assume that, of the total of N
patches, at time ¢, C(t) are colonized by infected cells and/or an excess of CTLs,
and the rest, U(t)=N-C(t), are uncolonised. If we define H(t) as the rate at which
empty patches are colonised at time t (this is analogous to incidence in
epidemiological models), then we can write an expression for Y(¢):
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where Y (7) is the probability that a patch is still colonized 7 days since its initial
colonization. Eq. S2.3 states that the total number of infected cells now (time t)
results from the contribution of all patches colonized 7 units of time before,

H(t — 1), and which therefore now contain y(7) infected cells (provided the
patches are still colonized, i.e. with probability 1 (7)). All contributions are added
by integrating over all times 7 from now (7 = 0) back to the time of the initial
conditions (z=t) and before. In theory, unlike the full metapopulation model for
which initial conditions are all defined at time t = 0, the nested model would
require specifying the history of H(t),t < 0, as part of the initial conditions.
However, we refrain from doing so explicitly here because we are interested in
identifying the system’s equilibria, which do not depend on the initial conditions.
In the deterministic model the duration of colonization is fixed and constant, a
function of only the parameters of the model. However, the deterministic model
is intended as an approximation to stochastic dynamics. To include the impact of
stochastic variation and patch heterogeneity, we included the parameter (1),
and specifically we assume the duration of infection is gamma distributed with
mean duration T and shape parameter 10 (variance = T*2/10). Without
including heterogeneity in this way we found that patches synchronise and the
system can exhibit stable limit cycles, and we chose the parameter 10 since this
minimised any synchronisation effect. This synchronisation effect was also
observed for the simulations (Figs 2, S1-S4). The duration T is calculated from
forward integration of Eqs S1.1 - S1.3, and is the time it takes for the number of
infected cells within a patch to fall below 1 and, in addition, for the strength of
the immune response to fall to within 1% of the within-patch steady state
immune response in the absence of infection.



Finally, H(t) is given by:
H(t) = %” (M yg(t) + w a L(D)) (S2.4)
with U() =N —C(@) =N — [ H(t — 1) p(r)dr.

We are ultimately interested in the equilibrium number of infected cells in the
nested model, since this is our proxy for SPVL. Using a star to denote values at
equilibrium (i.e. H(t) = H* Vt at equilibrium), Eq. S2.3 gives us the equilibrium
number of infected cells summed across all the patches:
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Using Eq. S2.1 and Eq. S3.1, we can then find the equilibrium number of infected
cells in the blood:
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which finally allows us to write an expression for the total number of infected
cells in the metapopulation as a whole at equilibrium:

Vo =¥V* 435 =¥ (1+55) (53.3)

We also note that the rate of patch colonization at equilibrium, H*, is 0 if
Rp = Rz + R, < 1, oris given by:

. N 1 .
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Here, Rp is the “patch-to-patch reproduction number”, which is defined as the
number of patches that a single patch infects during a single colonization event
when all other patches are uncolonised. Rp is the sum of
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cells transiting via the blood, where M /(M + &) is the proportion of infected
cells egressing from a patch that successfully reach a new patch when transiting
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contribution to Rp from infected cells transiting via the reservoir compartment,
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where a/(a + 6,) is the proportion of cells entering the reservoir that are
reactivated.



We have so far assumed that we have a “dynamic reservoir” that can change in
size, and therefore if the rate at which cells enter the reservoir is less than the
rate at which they are activated, the equilibrium reservoir size will be zero.
However, because the rate of reactivation, a, and the death rate of cells in the
reservoir, §;, are both very small, any depletion in the size of the reservoir will
be extremely slow, and much slower than the timescales of a couple of hundred
days that we are considering here. Since the reservoir is established early in
infection [4,5] and then maintained in the long term even when individuals are
put onto antiretroviral therapy [5-7], we make the further assumption for the
analytical approximation (but not the simulations) that the reservoir is of a fixed
constant size throughout infection; that is, L(t) = L Vt. Without this assumption,
the equilibrium reservoir size will be zero, even though this will be approached
long after the time-scale that we are interested in. This implicitly assumes that
the reservoir is maintained due to the proliferation and/or death of infected cells
[8,9]. With a non-zero constant size reservoir, no disease-free equilibrium is
possible; even in the absence of transmission from patch to patch (R = 0) the
rate of patch colonization at equilibrium is Hf;,,; = w a L and, for R > 0, itis

now given by:
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If the colonization of patches is short-lived, the equilibrium of the nested
metapopulation model represents a SMSS, where the number of infected cells as
a whole will be at equilibrium, but where the patches will not be (Eqs S3.1-S3.4).
Alternatively, if patches reach an endemic state of infection, the equilibrium
represents a FE, where the number of infected cells within all of the patches will
be at a non-zero equilibrium. If this condition is satisfied, Y;,;, can be written
simply as:
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where y*is the equilibrium number of infected cells within a patch, which can be
computed directly from Eqs S1.1-S1.3 and does not depend on the reservoir
(whether fixed or dynamic), as the immigration during a single-patch burst is
assumed negligible in the nested approximation.



2. Sensitivity of total number of infected cells to the effective migration rate
and the number of patches

The analytical approximation to the metapopulation model is expected to be
accurate only when the rate at which infected cells enter patches is very low, so
that once a patch is infected the within-patch dynamics are unaffected by the
further entry of infected cells into the patch. To quantify the rate of immigration
in the model, we define the “effective” migration rate as the rate at which
infected cells egress from patches multiplied by the probability that these cells
successfully reach a new patch:

_ &M
e M+6p

Using the parameters in Table 1, this gives us a “high” effective migration rate of
M, = 2.4 per day. To obtain a “low” M, more inline with the assumption of the
analytical approximation we assume only 10% of infected cells entering the
blood reach a new patch by setting 65 = 432 per day, giving M, = 0.25 per day.
Although a value of 65 = 432 per day is very high, our understanding of
lymphocyte trafficking is still incomplete and therefore such a high value might
not be unreasonable. Infected CD4+ T cells probably have decreased motility
compared to uninfected cells [10], and infected cells entering patches may well
be killed by an effective CTL response before an appreciable number of virions
are produced. Nonetheless, given the available evidence, we deem high M,
values more realistic.

We also consider a “very high” effective migration rate scenario by setting € = 25
per day and M = 480 per day, giving us M, = 25 per day. Although such high
migration rates are unrealistic for HIV, they enable us to gain additional insight
into how the model behaves when there is a high degree of mixing of infected
cells among patches.

Although the analytical approximation is expected to be accurate in the low
migration scenario, comparisons with the population based stochastic
simulations for different M, reveal that the quality of the approximation remains
satisfactory even for high M, values (Fig 4). This suggests that, at least for most
values of 8, the immigration of infected cells once a burst has been initiated has
little effect on the overall within-patch dynamics - a key assumption of the
nested approximation.

At very high levels of M, we might expect the simulations to begin to behave like
the single-patch well-mixed model. However, we still see the persistence of a
(relatively small) number of infected cells for most values of f and k (S3 Fig),



rather than the extinction scenario we would expect from the single-patch model
(Fig 4). This apparently paradoxical result can be explained as follows: At low
M,, reintroductions of infected cells into empty patches are relatively rare,
leaving sufficient time for a large proportion of CTLs to egress between bursts of
infection, which in turn results in large numbers of infected cells accumulating
during a burst before the immune system has the time to mount up. As M,
increases, migration tends to erode large bursts and redistribute the cells more
evenly among patches, and hence CTLs will accumulate in patches because they
are only rarely, if ever, uncolonised, which in turn will drive down the number of
infected cells. However, once the number of infected cells is driven down to
about the same order as the number of patches, some patches will not contain
any infected cells. Due to the very rapid egress of CTLs from empty patches,
these patches will also contain a reduced number of CTLs making them available
once more for successful colonisation; it is this process that maintains a small
population of infected cells in the metapopulation. If we decrease the number of
patches, fewer infected cells can be maintained in the SMSS regime and the
closer the metapopulation model results resemble those of the single-patch
model (S1 Fig).

3. Calculation of synchrony and relative amplitude

Oscillations are sometimes observed in the total number of infected cells in the
metapopulation when at SMSS. To investigate these oscillations we calculated
both the synchrony among patches and the relative amplitude of the oscillations.
Synchrony is the temporal correlation in the number of infected cells between
two patches, averaged over all possible pairs of patches [11]. Because the
possible number of pairings is very large, we estimated synchrony by taking the
average correlation in the number of infected cells between days 60 and 100 of
2500 pairs of patches (all possible pairs between patches 0-49 and 50-99).
Synchrony values can range from -1 to 1, where -1 means all pairs of patches are
perfectly in antiphase, 0 means the phases are independent across patches, and 1
means all patches are perfectly in phase. In practice, values of synchrony <0 were
rare, and only marginally less than zero, and so we only plot values of synchrony
between 0 and 1 (S1-S4 Figs).

Despite the caricature of constant viral load during chronic infection,
measurements taken from individuals can vary considerably between time
points, although typically not by orders of magnitude. We therefore also
calculated the relative amplitude of oscillations in the number of infected cells
as:
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where Y™ is the maximum number of infected cells observed during days 60-
100 of the simulations, and Y™ is the minimum. Measurements of both
synchrony and relative amplitude for the metapopulation model are shown in
S1-5S4 Figs.

Appreciable oscillations among patches are only observed when the
metapopulation is at SMSS and when there are more than 15-20 infected cells
per patch, averaged over all patches. In addition, the level of synchrony dips as
the system approaches FE because some patches will be at equilibrium whilst
others will not be. As might be expected, levels of synchrony increase as the
number patches decreases. However, levels of synchrony tend to be highest
when the effective migration rate, M, is high. When M. is low, only 10% of
infected cells egressing from a patch successfully reach a new patch, thus limiting
the ability of patches to synchonise. At very high M., infected cells rapidly
circulate among patches (CD4+ T cells remain in a patch for less than an hour on
average), which reduces the size of bursts of infection, thus preventing
synchronisation among patches. In the presence of a reservoir, we also see
reasonably large fluctuations in the number of infected cells when viral loads are
very low due to the activation of latently infected resting CD4+ T cells.

4. The “CTL-proliferation” model

In the main text we assume CTLs accumulate within patches because egress from
these patches is prevented, whilst immigration of CTLs continues (we call this
the “CTL-immigration” model). Alternatively, CTLs might accumulate as a result
of local proliferation due to the presence of antigen. To investigate how the local
proliferation of CTLs affects our model results, we developed a “CTL-
proliferation model”. This is identical to the “CTL-immigration” model, except
Eq. 1.4 is replaced with:
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where g is a measure of the CTL proliferation rate. For the CTL proliferation
model we use values of ¢ = 0.001 per day, and g = 1 per day. As with the CTL
immigration model, we chose these parameters so that the number of CTLs
within a patch typically reaches its maximum in between 1 and 4 days, in line
with empirical observations [12].



Results for the CTL proliferation model are shown in Figures S5-S10. A key
difference between the CTL proliferation model compared to the CTL
immigration model is that the rate at which CTLs accumulate in a patch depends
on how rapidly the number of infected cells increases (S5 Fig). In particular,
CTLs proliferate more rapidly as the number of infected cells in the patch
increases, thus limiting the size of bursts of infection. When the metapopulation
is at a SMSS we therefore see more moderate increases in the number of infected
cells as 8 increases or k decreases (compared to the CTL immigration model)
followed by a large jump in the number of infected cells as the system moves
from SMSS to FE (S6-S9 Figs). In addition, due to the small burst size, we do not
see the synchronisation among patches that we observe for the CTL immigration
model and oscillations in the total number of infected cells (S6-S9 Figs). Because
at SMSS bursts of infection tend to be small in size, at low migration rates the
metapopulation is prone to stochastic extinction for parameters where the
nested approximation predicts a SMSS should be sustained. We do not see this
for the CTL immigration model due to the larger bursts of infection in this model.

5. Likelihood calculations and optimization

We calculated the likelihood of different distributions of set-point viral load
(SPVL) given the single patch model and the “CTL immigration” and “CTL
proliferation” metapopulation models, with a high effective migration rate, M. =
2.4 per day, and in the presence of a reservoir. The SPVLs for the single patch
model were derived using the analytical solution to the single patch model,
whilst the SPVLs for the metapopulation model were derived from simulations.
We assume that 8 and k are distributed according to truncated normal
distributions with probability density functions f(8; ug, 9, Bmin, Pmax) and
f(k; Ui, 0%, Kmin, kmax) respectively, independent of each other. Since an
infection is not expected to establish in the first place if the reproduction number
of infected cells at the time of infection (i.e. in the absence of a CTL response and
of a reservoir), R,,,cr1, is less than 1, we can calculate £3,,;,, as:

M
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where the term in parentheses accounts for the fact that, of all infected cells that
M

M+6p
parameters). We further assume k,,;,= 0 and Bqx = kmax = 20, since these are
the limits used in our simulations. We calculated the log-likelihood of the
metapopulation model and the single patch model given the Dutch data (S1

egress from patches, a fraction will re-enter patches (see Table 1 for

Table), for all integer values of U Mk between 5 and 15, and integer values of g,



o, between 1 and 10. Because of differences in the sensitivities of viral load
tests, we pooled all individuals in the Dutch cohort with a viral load less than 103
per ml, and for all other individuals we pooled the viral data into half log
increments (i.e. 103-103, 103-5-10%, etc.) to give the number of individuals in
each bin, n;. Denoting by qb(vl- |,u[;, 0, Uk, ak) the probability that the SPVL
(computed from the simulation) of an individual with £ and k drawn from the
truncated Normal distributions with parameters g, g, 1y, 0 falls in bin i, and
assuming the Dutch cohort is representative of the set of people in chronic HIV
infection stage, so that individuals in the cohort are distributed in the bins
according to a multinomial distribution, the log-likelihood is proportional to:

logL(uﬁ,aﬁ,uk,ak|Data) o« Y,;n;log (¢(vi|uﬁ,aﬁ,uk,ak))

The method for calculating the log-likelihood for the single-patch model was
similar, except we randomly selected ten thousand paired values of f and k (not
necessarily integer) from the truncated normal distributions, and used the
equilibrium of the single patch model directly to calculate the expected SPVL for
each of these paired values of § and k. The predicted maximum likelihood
distributions of SPVL for the CTL immigration model, the CTL proliferation
model and the single patch model are shown in S10 Fig, together with the
corresponding bivariate marginal likelihood profiles. All likelihood values are
reported in S2 Data.
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