
Dear Reviewer #1,  

We greatly appreciate the comments towards improving the quality of our work. Please see a 
response to each of your comments below.  

Comment #1: The authors can provide more clear description for the definition of the 
indices used as features (perhaps provide some figure illustrations). 

We thank the reviewer for suggesting a clearer description of the features used. In this 
context, please find Figure 3, and Supplement Figure 3 (both reproduced below) that are 
provided to describe and illustrate example features used in the algorithm. Figure 3 
illustrates 4 features used in the algorithm, which are described as: 1) the variation in the 
atrial depolarization duration is a feature extracted from the OVG signal in the time 
domain, 2) quantification of the atrial depolarization vector in phase space, 3) 
quantification of PPG pulse base amplitude and 4) ventricular repolarization in band-pass 
filtered phase space. Supplement Section 3 defines 6 feature families that include all 
features contributing to the algorithm.  

A description of each are provided in the methods and results, and the clinical translation 
of the features (physiologic representation of atrial and ventricular depolarization and 
repolarization in heart failure) are provided in the discussion.  

To provide addition details, please find an expansion to Supplement Section 3 with the 
following:   

Each of the feature families used in the present work is described in the table 
below, including the characteristics of the signal that is being quantified, as well 
as the calculation and compression methodology. Specifically, the signal is 
acquired for a duration of 3.5 minutes over consecutive cardiac cycles. Features 
are extracted this duration in three ways:  

1. Cycle-by-cycle: The feature is calculated on each cardiac cycle, yielding a 
distribution of features across the cycles. The feature is then compressed through 
the calculation of parameters of that distribution, such as mean, median, 
interquartile range, and percentiles.  

2. Longer-duration segment(s): The feature is calculated across longer-duration 
segment(s) that encompass multiple cardiac cycles, after which the same 
compression strategy as used for cycle-by-cycle features is applied. However, 
parameters are limited to central tendency measures (i.e., mean and median).  

3. Whole-signal calculation: The feature is calculated using the entire duration of 
the signal, after which no compression is required. 



Comment #2: Since this is a multi-center study, the authors can provide descriptions 
about the chosen centers. For example, why choosing these centers? Any special subject 
characteristic for each center? 

The primary requirement in site selection was that the site have a well-established clinical 
and research program. A secondary requirement as that the sites have high catheterization 
lab volumes to support study enrollment. There were no special subject characteristics for 
each center; subjects must simply meet the study inclusion and exclusion criteria. 
Furthermore, our sites encompass both outpatient clinical environments as well as 
hospitals and were specifically chosen to increase the diversity of enrollment and for 
broad geographic representation.  

Please find the paragraph above added to Supplement Section 7 to provide additional 
details in the selection of enrollment centers.  

  



Dear Reviewer #2,  
 
We greatly appreciate the comments towards improving the quality of our work. Please see a 
response to each of your comments below.  
 
 
Introduction 
 

Comment #1: It would be nice to include some literature reviews on any previous 
studies predicting LVEDP using non-invasive measurement, if any.  

 
Thank you for suggesting additional context and previous studies using LVEDP.  Similar 
to your comment and suggested changes between the introduction and discussion 
sections, please find lines 101-115 of the Introduction amended (below) to include 
previous studies predicting LVEDP using non-invasive measurements such as 
echocardiography.  
 

In one possible application, while systolic dysfunction is characterized by reduced 
ejection fraction, additional modalities are required to adjudicate dysfunction that 
is limited to diastole, with the aim of estimating left ventricular (LV) filling 
pressures. Left ventricular end diastolic pressure (LVEDP) is of distinct interest. 
The measurement of LVEDP, whether in the presence of reduced or preserved 
ejection fraction is complex and commonly characterized by multimodality 
diagnostic imaging. For example, elevation in Brain Naturetic Peptide (BNP) 
(2,3) and fixed ratios based on echocardiography (spectral Doppler and Tissue 
Doppler derived E/e’) (4) are used to classify if left atrial pressure is elevated or 
not. Several recent studies have aimed to predict diastolic dysfunction (i.e., 
intracardiac pressure elevation) using ML approaches, such as from CNN analysis 
of echocardiographic beat variability (5) and clustering of echocardiographic 
markers to understand the patterns of diastolic dysfunction across patients with 
symptomatic CVD (6). While such developments are promising in the 
characterization of myocardial function, the prediction of LV pressure elevation 
as a binary classification (elevated or not elevated) across a spectrum of LV 
pressures that can be used to guide downstream testing and treatment is of value. 

 
Results 

Comment #2: Are all the results shown in the results section using the ensembled 
model? 

 
Yes, all the results presented in the results section are using the ensembled model. Our 
validation plan was a single assessment of the algorithm performance on the blinded 
validation cohort. The sole assessment was chosen to nullify any multiplicity issues. 
Therefore, the validation dataset was assessed only once, using the ensembled model.  
 
Please find lines 191-192 added to the Results section to ensure that the readership 
understands how the results were generated:  



 
All results (primary and secondary) used the ensembled model as a single 
assessment of algorithm performance on the blinded validation cohort. 

 
 
Discussion 
 

Comment #3: The discussion should focus on the results presented in this study, and the 
literature reviews should be moved to the introduction. 
 

We appreciate this feedback, and we have moved this discussion of the literature to the 
introduction. Please refer to the response to comment #1 above.  
 

Comment #4: In the limitation, the authors mentioned that study subjects taking 
diuretics might affect the specificity. Have the authors tried to remove those subjects 
and rerun the model to test that hypothesis? 

 
We thank the reviewer for the valuable feedback.  

 
As noted in Table 1, 36 of the 258 subjects with non-elevated LVEDP were taking a 
diuretic. The specificity in this subgroup was 64%, and in the subgroup not taking a 
diuretic, 68% (p=0.57 for comparison). The specificity in the overall population was 
68%. The reduction in specificity in the diuretic subgroup was not significant when 
considering the small number of subjects in this subgroup to affect the overall specificity. 
Therefore, while the point-estimate of specificity in the diuretic subgroup was lower than 
that in the non-diuretic subgroup, the diuretic subgroup is not sufficiently sized to draw 
any statistical conclusions on differences in specificity.  
 
Please find the limitations section, lines 338-344, updated to reflect the additional 
analysis above.  
 

‘We identified 14% (36/258) of subjects with non-elevated LVEDP were taking a 
diuretic at the time of enrollment that may have impacted the performance of the 
ML predictor.  When compared to overall study population the specificity was 
similar within this cohort (68% vs 64%, p=0.57) and when the analysis was re-run 
when excluding this cohort, there was no difference in overall specificity. While 
we contend that diuretics are an important factor when considering the 
measurement and prediction of LVEDP, the small number of subjects in this 
group does not permit us to determine its impact on performance within the study 
population as presented.’ 

 
Comment #5: The authors should add the study populations are patients likely to have 
CAD to the limitation. 

 
We agree that it’s important to capture this aspect of the population in the limitations 
section, and have added it in the revised manuscript in lines 352-361 as the following:  



 
Our study population is intrinsically limited by the recruitment methodology, which was 
subjects referred to left heart catheterization for assessment of obstructive CAD using 
coronary angiography, and specifically the subgroup where the treating physician chose 
to measure the LVEDP. We employed this study methodology to ensure that subjects had 
a catheterization-confirmed elevated LVEDP, but at the limitation of subjects referred for 
the evaluation of obstructive CAD. While this may introduce sample bias, we found 
significant CAD in only 38% of the overall study cohort, a higher incidence of 
obstructive CAD was observed in subjects with non-elevated LVEDP compared to those 
with elevated LVEDP (43% vs 24%). Upon subgroup analysis, there was difference in 
algorithmic performance among those with or without obstructive CAD.  
 

Comment #6: The authors should also add the possibility of overfitting to the limitation 
unless they can justify the large number of features they used in the study. 
 

 
We agree that it’s useful to address the possibility of overfitting.  
 
The use of an ensemble does not increase the likelihood of overfitting, but rather 
mitigates it by eliminating the bias associated with the selection of a single model. 
Therefore, the possibility of overfitting is analyzed from the perspective of each 
constituent model. 
 
First, as shown in S10, each model is exposed to an average of 149 features (with a range 
of 89-194). Secondly, as the model hyperparameters in S10 demonstrate, the models were 
conservatively designed to mitigate the possibility of overfitting. 
 
Specifically, 4 of the models were Random Forest, which intrinsically limit overfitting by 
only allowing each component tree access to the square root of the total number of 
features, and by bootstrap sampling training subjects so that every component tree only 
has access to a subset of the entire training set. Overfitting was additionally controlled 
through the use of the maximum tree depth hyperparameter. Deep trees with many splits 
increases the likelihood of overfitting, and therefore the depth was limited to 3 in most of 
the models, with the last (which had access to the least number of features) permitted to 
proceed to a depth of 7. 
 
Second, 4 of the models were Elastic Net, which is a linear model capable of 
regularization. The linear nature of the model restricts its ability to capture complex 
interactions between the features. 3 of the 4 Elastic Net models were also regularized 
(with alpha = 0.003 or 0.01), which limits the ability of the model to rely on any 
particular small subset of features. 
 
Third, the remaining 5 models were Extreme Gradient Boosting (XGB), which is a 
boosted tree model. Learning rate, which is step size shrinkage to make boosting more 
conservative, was set from 0.3-0.5 across the models.  Maximum tree depth was also set 
conservatively to 3-7. Minimum child weight also controls tree partitioning, and was set 



to non-zero values (3-5). Regularization alpha was enabled (0.1-0.5) to add L1 
regularization to the weights. 
 
Finally, the ultimate test of overfitting is the performance on unseen blinded data, which 
yielded a high-performing AUC of 0.81.Through the analysis of the algorithm, and the 
performance on unseen blinded data, overfitting did not occur. 
 
We have modified the limitation section to address overfitting.  Please find the following 
revision on lines 362-453:  
 
 
Overfitting, and conversely generalizability, are critical aspects of machine learning and 
when a large number of features are used for model development. The use of an 
ensemble, as is the case, does not increase the likelihood of overfitting but rather 
mitigates it by eliminating the bias associated with the selection of a single model. 
Therefore, the possibility of overfitting should be analyzed from the perspective of the 
constituent models. Firstly, as shown in S10, each model is exposed to an average of 149 
features (with a range of 89-194). Secondly, as the model hyperparameters in S10 
demonstrate, the models were conservatively designed to mitigate the possibility of 
overfitting. For example, four of the models were Random Forest, which intrinsically 
limit overfitting by only allowing each component tree access to the square root of the 
total number of features, and by bootstrap sampling training subjects so that every 
component tree only has access to a subset of the entire training set. Overfitting was 
additionally controlled through the use of the maximum tree depth hyperparameter. Deep 
trees with many splits increases the likelihood of overfitting, and therefore the depth was 
limited to 3-7. Other model types (Elastic Net and XGBoost) were also designed 
conservatively. Finally, the ultimate test of overfitting is the performance on unseen 
blinded data, which yielded a high-performing AUC of 0.81. In conclusion, through the 
analysis of the algorithm, and the performance on unseen blinded data, overfitting did not 
occur. 
 

Methods 
 

Comment #7: The study population are patients that are likely to have CAD, which 
seems to be a biased dataset to predict LVEDP. If the aim is being able to predict the 
LVEDP values for just patients who are likely to have CAD, then this would be 
acceptable, but if the aim is to predict LVEDP for a wider range of populations, then it 
would make sense to include other patients irrelevant to having CAD. 

 
The selection of the population is a critical decision and we agree that this is a potential 
limitation of our study and an important factor when interpreting the generalizability of 
our results.  
 
On post-hoc analysis, a majority 62% of study subjects did not have obstructive CAD, 
among which 23% had elevated LVEDP>25 mmHg.  This incidence of non-obstructive 
CAD at the time of cardiac catheterization among patients referred for the evaluation of 



CAD is important and consistent with the population-based data by Patel et al. (NEJM 
2010) . As such, our study cohort is mixed, those with and those without obstructive 
CAD.  Upon sub-group analysis (shown in Figure 7, reproduced below) supports that the 
ML predictor was consistent across sub-populations. While this is exploratory it suggests 
that there are signals for the generalizability of our results to symptomatic patients 
without CAD.    
 

  
 

 
 
We aim to analyze real world data once the ML device is available for clinical utilization 
and plan to report the results in a follow up paper.   
 
 

Comment #8: Line 336: Is it without CVD or CAD? If it is CVD, then which diseases 
are considered here? As CVD is a very wide category. 

 
CVD is correct – asymptomatic subjects, with risk factors controlled to minimize the 
chance of undetected CVD of any kind were used for development purposes only (were 
not included in the validation cohort).  
 

Comment #9: Is the validation group also patients likely to have CAD? 
 
The development cohort was composed of two subgroups: 1) symptomatic patients 
referred to cardiac catheterization for evaluation of CAD, and who also have a measured 
LVEDP, and 2) asymptomatic subjects without CVD (see response to Methods Comment 
#2). The validation cohort was recruited from the exact same population as development 
cohort – symptomatic patients referred to cardiac catheterization for the evaluation of 



CAD. Therefore, yes, the validation group is also composed of patients at suspicion of 
obstructive CAD.  
 

Comment #10: What type of catheter was used to measure LVEDP, specs? 
 

The choice of catheter to measure the LVEDP was left to the discretion of each 
interventional cardiologist.  

 
Comment #11: Line 353: it says the following 4 categories, but there are 5 listed. 

 
Thank you, that was a typo; it has been corrected in the revised manuscript.  

 
Comment #12: Line 368: what are the symptoms are considered here for HF 

 
Thank you for identifying a misstatement of the symptoms. These are the subjects from 
the validation cohort (referred to cardiac catheterization), and the text have been clarified 
to remove the mention of heart failure on lines 522-524:  
 

‘Bayesian analysis to determine the post-test (i.e., posterior) probability of the 
machine-learned predictor based on varying the pre-test probability (i.e., low, 
intermediate, and high prior probability of elevated LV filling pressures) among 
symptomatic patients.’ 

 
Comment #13: From Line 414 – 420, please give some specific numbers for the cut-offs, 
e.g. high-frequency noise above XXX Hz?? Maximum measurable value XXX? 

 
The manuscript text has been modified with additional information on SNR. However, 
the signal quality assessment has been described in detail in a previous publication by our 
group (Fathieh 2021 discussed in Supplement Section 5).   

 
Please find the modifications below and corresponding line numbers to address SNR:   
 

Line 576: A SNR of 57 was considered acceptable for powerline noise, and of 19 
for high frequency noise. 
Line 582-583: SNR is not applicable to this score because the occurrence is 
transient.   

 
Comment #14: Could you give a bit more details on how the features are calculated? I 
imagine you have both OVG and PPG signals with multiple cardiac cycles. Do you 
calculate the features cycle by cycle? If so, how do you get the final subject level 
features based on the cycle features? Do you calculate the features over the whole 
recorded signal? If so, what is the time window you use for each recording? If the time 
window is constant, then how many seconds? If not, please justify. 

 
The features are extracted in an identical, automated manner across all signals. As 
mentioned in the Acquisition System Description, we will clarify to provide additional 



explanation. The acquisition duration time was 3.5 minutes; therefore, as you mentioned, 
we have many cardiac cycles per subject.  
 

Line 532: Signal data was acquired for 3.5 minutes. 
 
In general, the duration of the recording is managed in one of three ways during feature 
extraction.  First, calculating the features on a cycle-by-cycle basis, and statistically 
compressing across the cycles using the distribution of calculated values across the 
cycles. Compression can be performed using a variety of distribution parameters, 
including mean, median, interquartile range, and percentiles. For instance, the PPG Pulse 
Base feature described in S3 is calculated on a cycle-by-cycle basis, and is compressed 
through the calculation of the 75th percentile. Second, features are calculated in a series of 
longer duration segments, after which the same compression strategy is applied (though 
with parameters limited to central tendency measures, i.e., mean/median). Third, features 
are calculated using the entire signal, after which no compression is required. S3 has been 
augmented with this additional information. 
 
Please note, reviewer #1 (comment #1) posed a similar question and the response 
provided there is included below and added to Supplement Section 3:  
 

Each of the feature families used in the present work is described in the table 
below, including the characteristics of the signal that is being quantified, as well 
as the calculation and compression methodology. Specifically, the signal is 
acquired for a duration of 3.5 minutes, encompassing many cardiac cycles. 
Features are extracted this duration in three ways:  
1. Cycle-by-cycle: The feature is calculated on each cardiac cycle, yielding a 
distribution of features across the cycles. The feature is then compressed through 
the calculation of parameters of that distribution, such as mean, median, 
interquartile range, and percentiles.  
2. Longer-duration segment(s): The feature is calculated across longer-
duration segment(s) that encompass multiple cardiac cycles, after which the same 
compression strategy as used for cycle-by-cycle features is applied. However, 
parameters are limited to central tendency measures (i.e., mean and median).  
3. Whole-signal calculation: The feature is calculated using the entire 
duration of the signal, after which no compression is required. 

 
 

Comment #15: Could you provide a list of features used in the appendix? And how they 
are calculated? 

 
Supplement section 3 contains the families of features used, and now has been augmented 
with additional information to better describe the calculation (per Comment #14 above).  

 
Comment #16: Is the outlier detection for the cycle level features or in-between subjects 
as well? 

 



The outlier detection is performed on feature values for each subject to determine if the 
subject is inlying or outlying. Figure 1 visualizes the flow of subjects from the complete 
initial population to the study population and includes the identification of outlying 
subjects (N=49) that were therefore excluded from the analysis.  
 
The text has been modified on line 606 to ensure that it is clear to the reader:  
 

‘Mathematically outlying subjects were identified based on the signal’s feature 
values using the Isolation Forest algorithm (31).’ 

 
Comment #17: The rationale for choosing the 13 machine-learning models is unclear 
and how the hyper-parameters were chosen is also unclear. The authors claim that the 
ensemble outputs are intended to outperform any single model, but would they be able 
to provide some results showing that? 

 
As described in the methods section (Step 4: Machine Learned Model Optimization), the 
13 models were selected to capture a diversity of models, encompassing both the ML 
algorithm itself (Random Forest, Extreme Gradient Boosting, and Elastic Net), training 
data (with disease-negative always defined as LVEDP<12mmHg, as compared to either 
LVEDP>20mmHg or 25mmHg, and including or excluding healthy subjects), and the 
features available to the model.  
 
All models exhibited individual predictivity through cross-validation within the 
development dataset only (the validation cohort was reserved in a blinded manner for 
only a single test using the final ensemble). Through the diversity provided by varying all 
these properties, we intended to minimize the likelihood of overfitting the development 
dataset through the reliance on spuriously predictive patterns that may be present in only 
one combination, but not another. Further, ensembling removes a decision to select a 
single model out of the 13 candidates; doing so is a manual step likely to be contaminated 
by human bias.  
 
Given that our validation plan was strictly a single evaluation on the validation dataset, 
we cannot state that the ensemble of 13 models is the ideal solution, and that it would 
have outperformed any single constituent model. However, based on the logic that we 
outlined in the preceding paragraph, we believe that this is the best strategy that we could 
have taken, based on the stringency of our validation plan. Specifically, the ensemble 
approach is intended to on-average outperform any single model that we may have 
selected from the pool of 13.  
 
We appreciate this question and have updated the manuscript (Step 4: Machine Learned 
Model Optimization) with clarifications on our methodology that we’ve described in our 
response.  
 
Please see the revised lines 615-622 here:  
 



‘Each of the 13 models were individually performant based on cross-validation 
within the development data (S11), but represent unique analyses of LVEDP 
assessment. To capture the diversity of each model in a final single prediction, 
which is intended to eliminate the bias associated with the selection of a single 
model and thus reduce the likelihood over overfitting on the development data, 
the 13 model were amalgamated into a single predictive ensemble. The ensemble, 
composed of an average of the normalized outputs from the constituent models, is 
intended to on-average outperform any model that we may have selected from the 
pool of 13 when applied to new data (35).’ 

 
Comment #18: In terms of training the model, what type of training was used? Cross-
validation? 

 
The models were trained using cross-validation within the development dataset, which 
has been clarified in the text as described above in Methods question 11.  

 
Comment #19: Can the author provide some information about what they did to 
prevent overfitting the models? 

 
Please see our response to Comment #17.  

 
Comment #20: Can the author provide some details on how the 95% CIs were 
calculated? 

 
The CIs for AUC were calculated with De Long’s method. Clopper Pearson was used for 
sensitivity and specificity calculations. The CIs for the simulation were based on the 
performance at the 2.5th and 97.5th percentile performance across the simulation 
iterations.  
 
Please see the modified text on line 637 for AUC, sensitivity and specificity:  

‘CIs were calculated using De Long’s method for AUC, and Clopper Pearson for 
sensitivity and specificity.’ 

 
Please see the modified text on lines 669-671 for the simulation:  

‘The simulation was repeated for 1000 iterations with the values of the 
performance statistics averaged and confidence intervals calculated using the 
distribution of the statistics over the iterations (i.e., values at 2.5th and 97.5th 
percentiles).’ 

 
General Questions 
 

1. Have you investigated the correlations between features? 
 

It is possible that features may be correlated, and we haven’t investigated this in detail. 
However, while assumption of non-collinearity is critical for ordinary linear regression 
(OLR), that assumption is not made for the algorithms included in our ensemble (Elastic 



Net, Random Forest and XGBoost). Like OLR, Elastic Net is also a linear model, 
however Elastic Net is distinguished by the use of regularization, and thus can 
compensate for correlated features.  

 
Figures 
 

2. Figure 8: could you add what each colour and lines represent? 
 

We appreciate your comment on this figure – it’s now been updated with additional 
information. Please see the new Fig 8 legend here (appearing on lines 248-254):  
 

Fig 8: Relationship between pre-test (prior) probability and post-test (posterior) 
probabilities. a) the machine-learned predictor, b) BNP when greater than 
150pg/ml, or c) BNP when greater than 50pg/ml.  A positive test is shown in red, 
and a negative test in green. The diagonal dashed black line represents no change 
from the pre-test to post-test probability. The vertical dashed black lines represent 
intermediate to high pre-test probabilities (vertical dashed lines at 30%, 50% and 
70%) from left to right. The post-test probabilities were calculated based on a 
varying pre-test probability, and constant sensitivity, specificity, and 
corresponding likelihood ratios. 

 
3. Figure 9: This figure is not very clear. Personally, I don’t think it is necessary to have a 

figure to describe the random forest, as it is a very well-known method. I think it is best 
to describe what setup was used in the Random Forest, such as bootstrapping=True, how 
many estimators, any limits for the number of trees, leaves etc. Same for the figure of 
XGBoost in the appendix. 
 
Thank you, we’ve removed Figure 9. S10 previously contained the hyperparameter 
settings for Elastic Net, XGBoost and Random Forest, and we’ve expanded that to 
include information on bootstrapping configuration, and to clarify that default 
hyperparameters settings were used in all other cases. Please see that reproduced below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Unless otherwise noted in the table, the hyperparameters for the algorithms were set to the default value.   
 

Number Algorithm Training Data Number of Features Hyperparameters 

1 Random 
Forest LVEDP≤12 and LVEDP≥20 180 

Maximum Tree Depth = 3 
Minimum Samples Per Leaf = 1 

Number of Trees = 500 
Bootstrapping = True 

2 Elastic Net LVEDP≤12 and LVEDP≥20 194 

Alpha = 0.003 
Fit Intercept = True 

L1_ratio = 0 
Normalize = False 

3 Random 
Forest LVEDP≤12 and LVEDP≥20 95 

Maximum Tree Depth = 3 
Minimum Samples Per Leaf = 1 

Number of Trees = 100 
Bootstrapping = True 

4 
Extreme 
Gradient 
Boosting 

LVEDP≤12 and LVEDP≥25 162 

Learning Rate = 0.5 
Maximum Tree Depth = 3 

Minimum Child Weight = 3 
Number of Trees = 100 

Regularization Alpha = 0.1 

5 
Extreme 
Gradient 
Boosting 

LVEDP≤12 and LVEDP≥25 194 

Learning Rate = 0.3 
Maximum Tree Depth = 7 

Minimum Child Weight = 3 
Number of Trees = 100 

Regularization Alpha = 0.5 

6 
Extreme 
Gradient 
Boosting 

LVEDP≤12 and LVEDP≥25 134 

Learning Rate = 0.5 
Maximum Tree Depth = 7 

Minimum Child Weight = 5 
Number of Trees = 100 

Regularization Alpha = 0.1 

7 Elastic Net LVEDP≤12 and LVEDP≥25 194 

Alpha = 0.003 
Fit Intercept = True 

L1_ratio = 0 
Normalize = True 

8 
Extreme 
Gradient 
Boosting 

LVEDP≤12 and LVEDP≥25 152 

Learning Rate = 0.3 
Maximum Tree Depth = 5 

Minimum Child Weight = 3 
Number of Trees = 100 

Regularization Alpha = 0.3 

9 Elastic Net LVEDP≤12 and LVEDP≥25 122 

Alpha = 0.01 
Fit Intercept = True 

L1_ratio = 0.1 
Normalize = True 

10 Random 
Forest LVEDP≤12 and LVEDP≥25 179 

Maximum Tree Depth = 3 
Minimum Samples Per Leaf = 1 

Number of Trees = 500 
Bootstrapping = True 



11 Random 
Forest LVEDP≤12 and LVEDP≥25 89 

Maximum Tree Depth = 7 
Minimum Samples Per Leaf = 1 

Number of Trees = 50 
Bootstrapping = True 

12 
Extreme 
Gradient 
Boosting 

LVEDP≤12 and LVEDP≥25 119 

Learning Rate = 0.3 
Maximum Tree Depth = 7 

Minimum Child Weight = 3 
Number of Trees = 10 

Regularization Alpha = 0.3 

13 Elastic Net LVEDP≤12, LVEDP≥25, 
healthy subjects 122 

Alpha = 0 
Fit Intercept = False 

L1_ratio = 0.1 
Normalize = False 

 
  
 
 

 

 

 


