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Abstract: In this paper we present the characteristics of sensors 
used to monitor the pollution levels in Mexico City, namely sulfur 
dioxide (SO2), nitrogen oxides (NOx), ozone (O3), , and carbon 
monoxide (CO). A novel algorithm to predict contamination levels 
is presented: the Gamma classifier. Also, a new coding technique 
is introduced, allowing the conversion from a series of values 
taken from SIMAT databases into a set of patterns, which in turn 
are useful for the task of pollutant forecasting. Experimental 
results show a competitive performance by the Gamma classifier 
as a predictor, when compared to other methods. 
 

Keywords : Associative Memory, Pattern Classifiers, Pollutant 
Forecasting; Pollutant Sensing.  

I. INTRODUCTION 

Environmental problems are common in Latin American 
countries [1,2]. In particular, atmospheric pollution in 
Mexico City is measured using specific sensors for each 
pollutant of interest by analyzing the concentration of said 
pollutants in small air samples. This data is gathered and 
managed by the Mexico City Atmospheric Monitoring 
System [3]. 

It is possible to find in the state of the art several 
algorithms to predict air pollutants, in order to give better and 
more comprehensive information to policy makers and the 
population: linear regression [4], neural networks [5-8], 
support vector machines [9], and pollution models such as 
Caline and IITLS [10]. In the current work, atmospheric 
pollution data from Mexico City were used, employing a 
method of recent proposal: the Gamma classifier [11-13]. 
This method exhibits competitive performance, as shown in 
the experimental results. The rest of the paper is organized as 
follows. In Section 2 the SIMAT (Mexico City Atmospheric 
Monitoring System) is presented and described. Then, 
section 3 presents the sensors used to sample and measure 
each pollutant of interest, according to the requirements 
indicated in section 2. Then, Sections 4 and 5 contain the 
description of the Gamma classifier and the experimental 
results, respectively. Finally, some conclusions and lines of 
future work are drawn in section 6. 
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II. SIMAT 

SIMAT is dedicated to monitoring and predicting pollution 
conditions in Mexico City, as well as preventing the 
population and the authorities about health risks [3]. SIMAT 
consist of four subsystems: 

• RAMA: it is responsible for measuring hourly levels of: 
ozone (O3), sulfur dioxide (SO2), nitrous oxides (NOx), 
carbon monoxide (CO), PM10 and PM2.5) 

• REDMA (Manual Atmospheric Monitoring Network, 
Red Manual de Monitoreo Atmosférico in Spanish) monitors 
particulate matter suspended in the air (PM10, PM2.5 and 
total suspended particulate matter PST), as well as their 
concentration and composition; each measurement is taken 
manually every six days. 

• REDMET monitors meteorological parameters —such 
as wind direction and speed— and solar radiation, in order to 
elaborate meteorological forecasting and dispersion models; 
it also records and monitors the UV index. 

• REDDA measures both dry and wet deposit, whose 
analysis allows the study of rain properties. 

The air quality in Mexico City is measured with IMECA 
points. If they exceed 100, the health of the population is put 
at risk, as specified in table I (NADF-009-AIRE-2006 [14]).  

Table- I: IMECA and its implications for health 

IMECA Conditiona Effects on Health 

0-50: 
green 

Good 
Suitable for conducting outdoor 
activities 

51-100: 
yellow 

Regular 
Possible discomfort in children, the 
elderly and people with illnesses 

101-150: 
orange 

Bad 
Cause of adverse health effects on the 
population. 

151-200: 
red 

Very Bad 
Cause of greater adverse health effects 
on the population. 

>200: 
purple 

Extremely 
Bad 

Cause of adverse health effects in the 
general population. Serious effects may 
present in children and older adults with 
cardiovascular and/or respiratory 
illnesses such as asthma 

 
With the equations specified in this norm, the IMECA 

value and IMECA level (condition) can be computed, in parts 
per million (ppm). Thus, in order to compute the IMECA 
value, the starting point is the atmospheric concentration of 
each of the criteria pollutants. The main source of 
information for this task is the RAMA subsystem. For this 
study, historical and current data about the concentration of 
specific pollutants was used. 

III. POLLUTANTS SENSING 

This section describes the sensors to measure these 
contaminants: CO, O3, SO2, and 
nitrogen oxides (NO, NO2, and 
NOx). In each case, the physical 
phenomenon of principle used by 
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the sensors is presented, as well as the specifications of 
operations; also, a brief explanation of the harmful effects of 
exposure to a high concentration and what constitutes a high 
concentration for each pollutant is included. 

A. Carbon monoxide CO 

The measurement of carbon monoxide is taken by a Filter 
300E [15]. The model 300E is based on the absorption of 
infrared radiation (IR) by CO molecules at a wavelength of 
4.7 micrometers (m), computing the concentration through 
the use of the Beer-Lambert Law: 

0
lCI I e −=  (1)  

where 
• I is the intensity of light after being absorbed by CO. 
• I0 is the intensity of light before absorption. 
•  is the coefficient of absorption of CO. 
• l represents the distance that the light follows while 

absorbed by the CO. 
• C represents the CO concentration. 
Fig. 1 shows how model 300E processes a sample in order 

to measure how much CO it contains. Part A indicates a 
source of IR, whose light will be made to pass trough a 
rotating disc containing two gasses: one compartment is 
filled with nitrogen (N2), while the other is filled with CO 
(see parts B and C). While the disc is rotating, the light will 
go alternately through the N2 and the CO cells of the disc. 

When the light passes through the N2 cell (measurement), 
no IR in the frequency of interest is absorbed; while by 
passing through the CO cell (reference), some light is 
absorbed. Thus, an alternating signal is generated, carrying 
two different intensities of light for the frequency of interest: 
one for sampling purposes and one for reference 
purposes.The difference between these intensities once the 
light has been presented to the gas sample will represent the 
absorption of  

 

Fig. 1. Diagram of the CO measurement unit (model 
300E) 

light by said sample. This is accomplished in the absorption 
cell (D). Later, the light is passed through a filter (E), which 
only allows passage of the light in the frequency of interest: 
that having a wavelength around 4.7 m. Finally, the light is 
presented to a photodetector (F), which generates the signal 
(G) with the two levels of light intensity mentioned above. 

The 300E model thus exhibits a range of measurement 
from 0-1 ppm (parts per million) to 0-1000 ppm. 

The Mexican Official Norm NOM-021-SSA1-1993 [16] 
states the limit of exposure for CO at an average of 11.0 ppm 
during 8 hours, for once a year at most. According to [3], 
exposure to concentrations of CO of 100ppm for more than 
one hour can result in headaches, while concentrations of 

1600ppm during two hours may cause death 

B. Ozone O3 

Meanwhile, ozone is measured with a UV Absorption O3 
Analyzer model 400E, also by Teledyne Instruments [17]. 
This sensor takes advantage of a particular property of ozone 
in order to determine its concentration in an air sample: 
absorption of ultraviolet radiation (UV) with a wavelength 
centered around 254 nanometers (nm). The concentration is 
calculated using the Beer-Lambert Law (see equation 1), 
where: 

• I is the intensity of light after being absorbed by O3. 
• I0 is the intensity of light before absorption. 
•  is the coefficient of absorption of O3. 

• l represents the distance that the light follows while 
absorbed by the O3. 

• C represents the O3 concentration. 
Fig. 2 depicts how model 400E works. First, a mercury 

lamp (part A) is used to generate a UV radiation beam, which 
is then passed through the absorption cell (part C). Said cell 
has two connections to it, one for the influx of the reference 
and measure samples (part B), and other for the exit of the 
samples (part D). Finally, a photodetector is used to generate 
an electrical signal which represents the concentration of 
ozone in the sample (parts E and F, respectively). 

 

 

Fig. 2. Diagram of the O3 measurement unit (model 400E) 

In this manner, the 400E model has a measurement range 
from 100 ppb to 10 ppm, with a resolution of 0.5 ppb. Also, it 
can present results in several units: ppm, ppb, g/m3, and 
mg/m3. 

The Mexican Official Norm NOM-020-SSA1-1993 [18] 
establishes the limit of exposure to O3 at an average of 0.110 
ppm during one hour, which should not be exceeded (not 
even once a year). Given that ozone is such an aggressive 
oxidizer, its effect on health are mainly on the respiratory 
system: difficulty to breath, degeneration of lung cells, 
depression of the immune system, and increased 
susceptibility to allergenic agents and diseases [3]. 

C. Sulfur dioxide SO2 

For the measurement of sulfur dioxide, a different 
phenomenon is taken advantage of. In this case, the Teledyne 
Instruments UV Fluorescence SO2 Analyzer model 100E, 
based on the UV fluorescence principle, is used [19]. Here, 
the sample is irradiated with UV light of 214 nm in 
wavelength, exciting the SO2 molecules. The amount of 
excitation generated in the sample depends on the average 
intensity of the applied UV light, according equation 2: 

http://www.ijeat.org/
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( )0 1 lC
aI I e −= −  (2)  

where 
• I is the average intensity of light. 
• I0 is average intensity of UV light applied. 
•  is the coefficient of absorption of SO2 at 214nm. 
• l represents the distance that the light follows while 

absorbed by the SO2. 
• C represents the SO2 concentration. 
However, SO2 will not stay excited very long: it will go 

back to its more stable state of lower energy, emitting a UV 
photon of 330 nm in wavelength. The amount of light 
produced by this decaying of SO2 depends on the speed of the 
reaction, as expressed by: 

( )*
2SOF k=  (3)  

where 

• F is the amount of light emitted. 

• k is the speed of *
2SO  decaying into SO2. 

• *
2SO  is the concentration of excited SO2. 

The speed of the latter reaction is dependant on the 
temperature of the gas: at higher temperatures, decay of 

*
2SO  into SO2 happens at a faster rate. Thus, when the light 

trajectory inside the reaction cell is short, the applied UV 
light intensity and gas temperature are both known, and there 
is no interference, the amount of light emitted by 
fluorescence is directly proportional to the SO2 concentration 
inside the cell. 

In order to avoid interference by other fluorescent 
compounds (such as nitrogen oxide) or by the applied UV 
radiation, several measures are taken. These measures 
include the following: the sample is filtered, removing some 
of the interfering compounds; also, the photodetector used to 
sense the amount of light emitted by fluorescence is located 
at a right angle from the photomultiplier tube used to feed the 
reaction; on the other hand, a filter is used to isolate the 214 
nm UV light; and finally, the insides of the reaction cell are 
covered with a layer of Teflon in order to absorb stray light. 

The 100E model has a range of measurement of 50 ppb to 
20000 ppb, with a precision of 0.5% of the reading above 50 
ppb. The measurement can be expressed in either ppb, ppm, 
g/m3, or mg/m3. 

The limits of exposure before SO2 are set at an average 
0.13 ppm over 24 hours, once a year, and an annual 
arithmetic mean of 0.03 ppm, as published in the norm 
NOM-022-SSA1-1993 [20]. Among the effects that sulfur 
dioxide has on health are: respiratory diseases such as 
bronchoconstriction, bronchitis, tracheitis, and even death 
[3]. 

D. Nitrogen oxides NOx 

The sensor used to measure the nitrogen oxides 
concentration, which is the Teledyne Instruments 
Chemiluminescence NO/NO2/NOx Analyzer model 200E 
[21], bases its operation on the principle of 
chemiluminescence. First, the sample is mixed with O3, 

which causes a reaction between nitrogen monoxide and the 
ozone, obtaining NO2 and oxygen, as expressed below. 

*
3 2 2NO O NO O+ ⎯⎯→ +  (4)  

This reaction charges the NO2, which then frees the extra 
energy by emitting a photon with a wavelength between 600 
nm and 3000 nm, with a maximum centered on 1200 nm. 
Given that the amount of light emitted is related to the 
amount on NO2 present at the time of the reaction, it is 
possible to derive the concentration from the light intensity. 

Notice, however, that this procedure only measures the 
concentration of NO. To measure NO2, it is reduced to NO. 
This is done by passing the sample through another cell 
where molybdenum at 315° celsius is used as a catalyst. 

Mo 315
2NO NO⎯⎯⎯⎯→  (5)  

Now, the sample is again subjected to the 
chemiluminescence reaction. Thus, two readings are obtained 
from the light intensity: the concentration of NO, and that of 
NOx, whose difference gives the NO2 concentration. In order 
to avoid a noisy measure due to the presence of other gasses 
which may present a similar reaction to O3, an optical filter is 
used in order to suppress light with different wavelengths. 

The model 200E specifications of operation include the 
following: ranges of measurement from 0-50 ppb to 0-20000 
ppb, with independent ranges for NO, NO2, and NOx; lower 
detectable unit of 0.4 ppb; precision of 0.5% of reading; and 
the result presented in ppb, ppm, g/m3, and mg/m3. 

The effects of nitrogen oxides vary, from the almost inert 
NO to the quite aggressive NO2; however, they are known to 
cause respiratory affections similar to those caused by ozone, 
such as increased susceptible to respiratory infections, lung 
irritation and potentially lung damage similar to emphysema. 
The limit of exposure to nitrogen dioxide set by the norm 
NOM-023-SSA1-1993 [22] is an average of 0.21 ppm 
maximum one hour a year [3]. 

The preceding subsections present the different sensors 
used by the RAMA subsystem of SIMAT to automatically 
sample and measure each hour the concentration of several 
criteria pollutants. With these data, the IMECA is computed 
and periodically communicated to the population and the 
authorities. Although the criteria pollutants are given this 
quality in most countries, the sampling, measurement and 
monitoring of pollutants is done differently through the 
world. For instance, some countries use diverse units of 
measurement for the same pollutants: some use ppm while 
others use ppb, and yet others use mg/m3, for the same 
pollutant (i.e. ozone). In similar fashion, several methods 
have been applied to different databases around the planet, in 
order to predict future values for the concentration of a 
particular pollutant, once a set of past and current values is 
known. Some of these methods are taken from statistics, such 
as linear regression [4], while several methods from pattern 
classification and machine learning have been applied to this 
task, such as artificial neural networks [5-8] and support 
vector machines [9].  
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However, let us not forget the methods based on pollution 
modeling, such as Caline and IITLS [10]. These methods 
have been applied to data taken from diverse databases, 
whose records have been sampled and measured in a similar 
fashion to those of SIMAT, although not in quite the same 
manner.In the present paper, the Gamma classifier was 
applied to historical and current data regarding the hourly 
concentration of four pollutants —taken from the RAMA 
database— with the purpose of predicting the value of the 
next sample. However, in order to present the series of values 
to the classifier in an appropriate manner, the data was coded 
into patterns by using a novel technique. The Gamma 
classifier is presented in the following section, while the way 
in which the values delivered by the sensors were converted 
into patterns is further discussed in section 5. 

IV. THE GAMMA CLASSIFIER 

The Gamma classifier [11-13] is based on several 

concepts, namely: the gamma operator, alpha, beta, and u  

operators, and the Johnson-Möbius code.  
 

Table- II: Alpha and Beta operators 
 

BAA →:   AAB →:  

x y (x, y)  x y (x, y) 

0 0 1  0 0 0 

0 1 0  0 1 0 

1 0 2  1 0 0 

1 1 1  1 1 1 

    2 0 1 

    2 1 1 

A. Preliminaries 

Table II shows the Alpha and Beta operators, which were 
introduced in [23, 24]. They are the basis for the development 
of Alpha-Beta memories, the Gamma classifier, passing 
through models such as the Alpha-Beta-BAM [24], the 
Alpha-Beta support vector machines [25], and many other 
models [26-35]. 

The input to the operator u  is a binary vector x of 

dimension n, and at the output it throws a positive or zero 
integer: 

( )
1

,
n

i i
i

u x x 
=

=   (6)  

On the other hand, the Johnson-Möbius code converts a 
collection of real numbers into binaries: 
1. The minimum number is subtracted from each real number 

in the collection. 
2. Perform a scaling so that only positive or zero integers 

remain. 

3. Concatenate je  ones to m je e−  zeros. Here me  is the 

greatest positive integer number (or zero) to be coded, 

and je  is the current non-negative integer. 

The generalized gamma operator g . Two binary patterns 

form the input: x and y of dimensions n and m — n, m 
positive integers — in addition to a positive or zero integer 
value . The output is: 

( )
( )1 if , mod 2

, ,
0 otherwise

g

m u  
 

 −    
= 



x y
x y  

(7)  

 
A more extensive and detailed discussion on the former 

components of the gamma classifier can be found in [11]. 

B. The Gamma classifier algorithm 

Consider p patterns x with n real components. Let y be a 
pattern with real n components that will be classified. There 
are m mutually exclusive classes with ki patterns each. Thus, 

it is fulfilled that: 
1

m

i
i

k p
=

= . 

1. Apply the Johnson-Möbius code, to obtain a value em 
for each number (component) in the patterns: 

1

p
i

m j
i

e x
=

=   (8)  

where  represents the usual maximum operator. 
2. The stop parameter is calculated like this: 

( )
1

n

m
j

e j
=

=   (9)  

3. Apply Johnson-Möbius code to y. 
4. Convert the indices of the patterns into two: that of 

the case and the place it occupies within that class.. 
5. Reset  to 0. 

6. Apply ( ), ,i
g j j

 x y  (eq. 7). 

7. Compute a weighted sum ci for each class, according 
to this equation: 

( )1 1
, ,

k ni i
g j jj

ii kc



 

= = 
=

x y
 (10) 

  

8. If several maximums appear, add 1 to  and repeat 
steps 6 and 7 until the maximum is unique, or else 
the following condition is true:   . 

9. If the maximum is only one, do this: 

1

 such that 
m

y j i j
i

C C c c
=

= =  (11)  

10. If something else happens, assign to y the class of 
the first maximum that appears. 

V. POLLUTANTS FORECASTING 

In this section, the experiments done and the results 
obtained are presented and 
discussed. 
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A. Pattern coding 

A positive n number is set and patterns are formed with n 
consecutive values of the contaminant under study. The 
pollutant value n+1-th will be the class of the current pattern. 
Here we have chosen the value of n = 10. 

B. Experiments 

The types of experiments that are carried out in this work 
are shown in Table III. The experimental design is 
exemplified by experiment 1; data from the Instituto 
Mexicano del Petróleo (IMP) station feed experiment 1. 
Learning data: the whole 2000 year (8750 patterns); test 
(734): March 2001. 

In this work, data from 4 stations were used: Instituto 
Mexicano del Petróleo (IMP) for experiments 1, 2, and 3; 
Cerro de la Estrella (CES) for experiments 4 and 5; Tultitlán 
(TLI) for experiments 6, 7, 10, 11, and 12; finally, data for the 
experiments 8 and 9 were taken from Tacuba (TAC) station. 

Table- III: Experimental design 

   Set Period 

Exp. Pollutant Station Fund. Test 

1 CO IMP 2000 March 2001 

2 CO IMP 2006 February 2007 

3 CO IMP 2006 May 2007 

4 O3 CES 2006 February 2007 

5 O3 CES 2006 May 2007 

6 SO2 TLI 2006 February 2007 

7 SO2 TLI 2006 May 2007 

8 SO2 TAC 2001 February 2002 

9 NOx TAC 2002 June 2003 

10 NO TLI 2009 May 2010 

11 NO2 TLI 2009 May 2010 

12 NOx TLI 2009 May 2010 

C. Performance measure 

In equations 12 and 13, Pi represents the i-th predicted 
(future or unknown) level, while Oi is the i-th original (real, 
actual, or known) datum. 

( )
2

1

1 n

i i
i

RMSE P O
n =

= −  (12)  

( )
1

1 n

i i
i

Bias P O
n =

= −  (13)  

In general, small values are preferred for RMSE and bias. 

VI. EXPERIMENTAL RESULTS 

Table IV shows the experimental results of applying the 
Gamma classifier in the contamination data in the 12 
designed experiments.  

 
Table- IV: Experimental results (ppm) 

Exp. Pollutant Bias RMSE 

1 CO -0.028513 0.779154 

2 CO 0.012042 0.726013 

3 CO 0.062183 0.611769 

4 O3 0.000918 0.012302 

5 O3 0.000417 0.014443 

6 SO2 0.000676 0.012096 

7 SO2 0.000795 0.010487 

8 SO2 0.000408 0.009218 

9 NOx 0.001543 0.026103 

10 NO 0.000001 0.000037 

11 NO2 0 0 

12 NOx 0 0 

Note that the RMSE yields very similar values with the 
experiments of the same contaminant. With CO, for instance, 
the mean values are 0.705645 (exps. 1, 2, and 3) vs. 0.010600 
for SO2 (exps. 7 and 8). 

Comparison with other methods 

There are very few experimental pollutant prediction 
works that use SIMAT data. Table V shows the comparative 
results and there clearly shows the superiority of the Gamma 
classifier.The error values shown by the range in the 
experiments4 and 5 are tiny compared to the errors reported 
in the state of the art, when the contaminant is O3. 

Table- V: Comparison of results (SIMAT O3) 
Algorithm Performance 

(Abs. Mean Error) 
Bayesian network [5] 0.221000 
C4.5 [5] 0.176400 
Neural network [5] 0.160000 
Gamma exp. 4 0.000918 
Gamma exp. 5 0.000417 

In the specialized literature, research papers on 
contaminant prediction can be found. But the comparison of 
the experimental results cannot be straightforward, since the 
data comes from different sources and from different 
contaminants. 

Table VI shows some indirect comparisons with works of 
the state of the art. 

Table- VI: Comparison of results 

Algorithm Pollutant Performance 

(RMSE) 

IITLS [10] NOx (g/m3) 19.99 

Neural network [8] O3 (g/m3) 15 

Neural network [7] O3 (ppb) 13.79, 9.43 

Online SVM [9] SO2 (g/m3) 12.96, 10.90 

Neural network [6] CO, NO2, 

 SO2, and O3 (ERPI) 

5.852, 1.365 

Gamma exp. 3  

(current work & [13]) 

CO (ppm) 0.611769 
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Sensing and Forecasting of Pollution Data in Mexico City 

2377 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: A2247109119/2019©BEIESP 
DOI: 10.35940/ijeat.A2247.129219 
Journal Website: www.ijeat.org 

Multivariate linear 

regression [4] 

BaP (ng/m3) 0.449 

Gamma experiments 4,8,10,11,12 in ppm 

Gamma exp. 4 O3 0.012302 

Gamma exp. 8 SO2 0.009218 

Gamma exp. 10 NO 0.000037 

Gamma exp. 11 NO2 0.000000 

Gamma exp. 12 NOx 0.000000 

 
It is pertinent to note the great variability of the pollutants 

considered in the state of the art experiments. 
The authors work with pollutants as disologeous as CO, 

NO2, SO2, and O3, even a pollutant not very usual as it is 
benzo(a)pyrene (BaP) [4]. 

The problem of the comparison of results is complicated 
when the great variability of mediated units used by the 
different authors is taken into account: ppm, ppb, g/m3, 
ng/m3, and ERPI (European Regional Pollution Index) [6].  

To top it off, the methods used are also very different. 
However, a look at the values can give you an idea that the 
Gamma results are not bad, given the small values that throws 
the Gamma classifier given in Table VI. 

VII. CONCLUSION 

Atmospheric pollution in Mexico City is a grave problem at 
many different levels, both for Latin America and even the 
whole world, since such pollution favors global warming, 
with the consequences this entails. Different methods have 
been used to analyze air quality data and predict 
concentration levels for several pollutants which may 
endanger human health and lives, deteriorating the 
environment. In the present work, the data generated by 
several air quality sensors has been combined with a recently 
proposed pattern classifier, the Gamma classifier, and an 
emerging coding technique in order to forecast pollutant 
levels in Mexico City. 

As a work in the future, the authors of this research suggest 
applying the results presented here, in the approaches 
contained in the article [36]. 

It is also suggested to apply this methodology in other 
pollutants or other combinations of several of them. 
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