Bilateral midbrain transection induced hyperphagia accelerates the development of diabetes in Spontaneously Diabetic Torii (SDT) rats

Authors

  • Tomohiko Sasase Japan Tobacco Inc.
  • Makoto Ito Japan Tobacco Inc.
  • Yukihito Ishii Japan Tobacco Inc.
  • Takeshi Ohta Kyoto University

DOI:

https://doi.org/10.21776/ub.jsmartech.2021.002.02.69

Keywords:

Bilateral midbrain transection, Diabetes, Hyperphagia, SDT rats

Abstract

Spontaneously Diabetic Torii (SDT) rat is a model of severe type 2 diabetes and its complications. These characteristics of SDT rat are very useful to research diseases; however, the slow onset of diabetes may limit the usefulness of this animal model. To solve this problem, we performed bilateral midbrain transection on SDT rats and evaluated whether hyperphagia accelerates the onset of diabetes. By severing ascending fibers from the nucleus tractus solitarius to limbic regions through ventral and dorsal tegmental regions, food consumption was significantly increased in SDT rats and the onset of diabetes was accelerated. Cumulative incidence of diabetes in midbrain transected SDT rats was 88.9% at 7 weeks after surgery (14 weeks of age), while sham operated rats was 20.0%. Increased food consumption was correlated to body weight, plasma glucose level, plasma triglyceride level, and plasma insulin level. In conclusion, the overeating caused by blocking anorexigenic signal in brain significantly accelerates the onset of diabetes in SDT rats. The early development of type 2 diabetes may accelerate microvascular complications and is considered useful in the study of the disease in SDT rats.

Author Biographies

Tomohiko Sasase, Japan Tobacco Inc.

Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute

Makoto Ito, Japan Tobacco Inc.

Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute

Yukihito Ishii, Japan Tobacco Inc.

Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute

Takeshi Ohta, Kyoto University

Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture

References

International Diabetes Federation, 2019, IDF Diabetes Atlas, 9th edn. International Diabetes Federation, Brussels, Belgium.

Ramachandran, A., Snehalatha, C., Shetty, A.S., and Nanditha, A., 2012, Trends in prevalence of diabetes in Asian countries. World J Diabetes. 3(6), 110-117.

Goto, Y., Kakizaki, M., and Masaki, N., 1976, Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med. 119(1), 85-90.

Shinohara, M., Masuyama, T., Shoda, T., Takahashi, T., Katsuda, Y., Komeda, K., Kuroki, M., Kakehashi, A., and Kanazawa, Y., 2000, A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res. 1(2), 89-100.

Sasase, T., Ohta, T., Masuyama, T., Yokoi, N., Kakehashi, A., and Shinohara, M., 2013, The spontaneously diabetic torii rat: an animal model of nonobese type 2 diabetes with severe diabetic complications. J Diabetes Res. 2013, 976209.

Kobayashi, K., Sasase, T., Ishii, Y., Katsuda, Y., Miyajima, K., Yamada, T., and Ohta, T., The sphingosine-1-phosphate receptor modulator, FTY720, prevents the incidence of diabetes in Spontaneously Diabetic Torii rats. Clin Exp Pharmacol Physiol. (In press)

Okauchi, N., Mizuno, A., Zhu, M., Ishida, K., Sano, T., Noma, Y., and Shima, K., 1995, Effects of obesity and inheritance on the development of non-insulin-dependent diabetes mellitus in Otsuka-Long-Evans-Tokushima fatty rats. Diabetes Res Clin Pract. 29(1), 1-10.

Crawley, J.N., Kiss, J.Z., and Mezey, E., 1984, Bilateral midbrain transections block the behavioral effects of cholecystokinin on feeding and exploration in rats. Brain Res. 322(2), 316-321.

Ogawa, N., Ito, M., Yamaguchi, H., Shiuchi, T., Okamoto, S., Wakitani, K., Minokoshi, Y., and Nakazato, M., 2012, Intestinal fatty acid infusion modulates food preference as well as calorie intake via the vagal nerve and midbrain-hypothalamic neural pathways in rats. Metabolism. 61(9), 1312-1320.

Masuyama, T., Komeda, K., Hara, A., Noda, M., Shinohara, M., Oikawa, T., Kanazawa, Y., and Taniguchi, K., 2004, Chronological characterization of diabetes development in male Spontaneously Diabetic Torii rats. Biochem Biophys Res Commun. 314(3), 870-877.

Masuyama, T., Katsuda, Y., and Shinohara, M., 2005, A novel model of obesity-related diabetes: introgression of the Lepr(fa) allele of the Zucker fatty rat into nonobese Spontaneously Diabetic Torii (SDT) rats. Exp Anim. 54(1), 13-20.

Matsui, K., Ohta, T., Oda, T., Sasase, T., Ueda, N., Miyajima, K., Masuyama, T., Shinohara, M., and Matsushita, M., 2008, Diabetes-associated complications in Spontaneously Diabetic Torii fatty rats. Exp Anim. 57(2), 111-121.

Kimura, S., Sasase, T., Ohta, T., and Matsushita, M., 2011, Effects of ovariectomy on bone metabolism and bone mineral density in spontaneously diabetic Torii-Lepr(fa) rats. J Vet Med Sci. 73(8), 1025-1029.

Ishii, Y., Motohashi, Y., Muramatsu, M., Katsuda, Y., Miyajima, K., Sasase, T., Yamada, T., Matsui, T., Kume, S., and Ohta, T., 2015, Female spontaneously diabetic Torii fatty rats develop nonalcoholic steatohepatitis-like hepatic lesions. World J Gastroenterol. 21(30), 9067-9078.

Kemmochi, Y., Ohta, T., Motohashi, Y., Kaneshige, A., Katsumi, S., Kakimoto, K., Yasui, Y., Anagawa-Nakamura, A., Toyoda, K., Taniai-Riya, E., Takahashi, A., Shoda, T., and Yamada, T., 2018, Pathophysiological analyses of skeletal muscle in obese type 2 diabetes SDT fatty rats. J Toxicol Pathol. 31(2), 113-123.

Sakimura, K., Maekawa, T., Sasagawa, K., Ishii, Y., Kume, S.I., and Ohta, T., 2018, Depression-related behavioural and neuroendocrine changes in the Spontaneously Diabetic Torii (SDT) fatty rat, an animal model of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol.

Sasase, T., 2010, Pathophysiological characteristics of diabetic ocular complications in spontaneously diabetic torii rat. J Ophthalmol. 2010, 615641.

Kakehashi, A., Saito, Y., Mori, K., Sugi, N., Ono, R., Yamagami, H., Shinohara, M., Tamemoto, H., Ishikawa, S.E., Kawakami, M., and Kanazawa, Y., 2006, Characteristics of diabetic retinopathy in SDT rats. Diabetes Metab Res Rev. 22(6), 455-461.

Ishii, Y., Ohta, T., Sasase, T., Morinaga, H., Hata, T., Miyajima, K., Katusda, Y., Masuyama, T., Shinohara, M., Kakutani, M., and Matsushita, M., 2010, A high-fat diet inhibits the progression of diabetes mellitus in type 2 diabetic rats. Nutr Res. 30(7), 483-491.

Corsetti, J.P., Sparks, J.D., Peterson, R.G., Smith, R.L., and Sparks, C.E., 2000, Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis. 148(2), 231-241.

Ohta, T., Yamada, T., Kamiya, T., Gotoh, T., Tsubaki, M., and Shinohara, M., 2018, Quick-fat diet inhibits the development of diabetes in Spontaneously Diabetic Torii rats. Thai J Pharm Sci. 42(4), 183-187.

Smith, G.P., Jerome, C., Cushin, B.J., Eterno, R., and Simansky, K.J., 1981, Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science. 213(4511), 1036-1037.

Masuyama, T., Fuse, M., Yokoi, N., Shinohara, M., Tsujii, H., Kanazawa, M., Kanazawa, Y., Komeda, K., and Taniguchi, K., 2003, Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, Spontaneously Diabetic Torii rat. Biochem Biophys Res Commun. 304(1), 196-206.

Matsui, K., Oda, T., Nishizawa, E., Sano, R., Yamamoto, H., Fukuda, S., Sasase, T., Miyajima, K., Ueda, N., Ishii, Y., Ohta, T., and Matsushita, M., 2009, Pancreatic function of spontaneously diabetic torii rats in pre-diabetic stage. Exp Anim. 58(4), 363-374.

Downloads

Published

2021-04-16

Issue

Section

Articles