
 
     International Journal on Electrical Engineering and Informatics - Volume 6, Number 4, December 2014 

 
Analysis and Application of Quadratic Linearization to the Control of Permanent 

Magnet Synchronous Motor 
 

A. K. Parvathy1, Rajagopalan Devanathan1, and V. Kamaraj2 

 

1EEE Department, Hindustan Institute of Technology and Science, Chennai, India 
2EEE Department, SSN College of Engineering, Chennai, India, 

akparvathy@hindustanuniv.ac.in, devanathanr@hindustanuniv.ac.in, kamarajv@ssn.edu.in 
 

Abstract: The introduction of state equation model of the electrical machine based on 
direct and quadrature axes variables has paved the way for powerful control theories to 
be brought to bear on the problem of control of electric machines. Exact linearization 
has been applied to the control of permanent magnet synchronous motor (PMSM). In 
this paper, application of approximate linearization is proposed for the control of 
PMSM. Since the PMSM model is essentially quadratic, quadratic linearization is 
considered for the application. Conditions on the coordinate transformation and state 
feedback are derived for the linearization of a four dimensional permanent magnet (PM) 
machine model. The proposed linearization technique does not introduce singularities in 
the system as in the case of exact linearization. Also, to account for higher order 
nonlinearities including unmodelled dynamics, the linear zing transformations are 
adaptively tuned. Simulation studies verify the theoretical results presented. 
Hardware/software implementation is carried out to verify the effectiveness of the 
linearization technique proposed. The linearization technique proposed can also be 
applied to other types of electrical motors. 
 
Keywords: Nonlinear systems; Permanent magnet motor; Quadratic Linearization; 
State feedback. 
 

1. Introduction  
 Permanent magnet (PM) machines, particularly at low power range, are widely used in the 
industry because of their high efficiency. They have gained popularity in variable frequency 
drive applications. The merits of the machine are elimination of field copper loss, higher power 
density, low rotor inertia and a robust construction of the rotor [1].  
  A dynamic model of a PM machine using direct and quadrature axis variables such as in 
[1] paves the way for powerful control theories to be brought to bear on the problem of control 
of PM machine. Linearization which is a system-theoretic method of control is applied in this 
paper. 
 Zribi and Chiasson [2] proposed exact linearization for position control of PM stepper 
motor. Zhu et al [3] have combined exact-linearization with a state observer for rotor position 
and speed. In Wu et al [4], a two-input, two-output PMSM model is linear zed using 
differential geometric method. Jun Zhang et al [5] discuss decoupling control applied to PMSM 
using exact linearization. Bodson and Chiasson [6] have applied exact linearization to the 
control of electric motors including PMSM. Typically, exact input-output linearization 
involves deriving state feedback in terms of the inverse of a matrix of state variables, which is 
assumed to exist. A practical difficulty may arise when the matrix tends to be singular during 
the course of machine operation.In the dynamic feedback linearization method, proposed in 
[7], a singularity involving the rotor flux is introduced besides additional complexities 
involved. 
 Poincare derived what are known as homological equations for approximate linearization of 
autonomous differential systems as given in [8]. Krener [9] extended Poincare’s work to 
include control input. Approximate linearization does not suffer from the singularity issue 
mentioned  above.  Since  PMSM  can  be  adequately  described  by  a quadratic  model during  
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normal operation[1], quadratic linearization [10,11]  of PMSM is proposed in this paper. 
 Being an approximation technique, quadratic linearization introduces third and higher order 
terms into the system. These together with unmodelled dynamics present in PMSM can be 
accounted for by tuning the linear zing transformations similar to the method proposed by 
Narendra et al [12]. With this modification, approximate linearization can be made equivalent 
to exact linearization without the singularity issue being involved.  
 The main contribution of the paper is the application of approximate linearization and in 
particular, quadratic linearization to PMSM. The original results of the paper which have not 
been reported elsewhere are the following: 
1. Necessary and sufficient conditions for quadratic linearization of a class of two-input 

control affine system have been derived. PMSM model is shown to belong to this class.  
2. Stability analysis is carried for the first time in this paper for the class of system considered 

both before and after linearization. 
3. Verification of proposed theory using hardware implementation is included in the paper for 

the first time.  
 To summarize the rest of the paper, in section II, background material on quadratic 
linearization is given. In section III, the main theoretical result on quadratic linearization of 
PMSM is stated and proved. In section IV, tuning rules for linear zing transformation are 
derived for least square error minimization of the linear zed system output with respect to the 
output of a linear canonical system. In section V, simulation studies are carried out using 
MATLAB/SIMULINK to verify the theoretical results. In section VI, implementation of 
PMSM machine control using the proposed technique is described. In section VII, the paper is 
concluded. 
 
2. Background  
 Consider a single input control affine system of the form [10, 11] 
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  (1) 
where  A and B are matrices in the controller normal form 
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A is a nn×  matrix and B  is a 1×n  matrix. [ ]Tnxxxx L21= and u  is a scalar input. 

)(),( )()( xgxf mm 1− are homogeneous vector polynomials of order m  and )( 1−m  respectively, 
L,,32=m  

 In order to cancel the quadratic term of the system, change of coordinate and feedback  of 
the following form is considered, as given in [10,11] 

 )()( xxy 2φ+=  (3) 

 )()}({ )()( xvxu 211 αβ ++=  (4) 

where )()( x2φ   and )()( x2α are vector and scalar quadratic polynomials respectively and 
)()( x1β is a scalar linear polynomial. y and v  are the transformed (new) state and input 

respectively.  
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Applying the transformations (3) and (4), (1) can be reduced to    

 
)(),( 3vyOBvAyy ++=&  (5) 

where )3(),( vyO  represents  terms of degree greater than or equal to 3, provided the following  
homological equations  (6) and (7) as given in [13], are satisfied. ,  
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 )()( x2φ , )()( x2α and )()( x1β can be derived by solving  (6) and (7). 
 
3. Quadratic Linearization of PMSM 
A. Machine Model 
 The PM machine model given in Bose [1] and Pillay and Krishnan [14] can be derived as 
below    

 )()( xfBuAxx 2++=&  (8) 
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where dqdq iiuu ,,,   represent the quadrature and direct axis voltages and currents respectively 

and rωθ ,  represent rotor position and  rotor speed  respectively. afλ is the flux induced by the 
permanent magnet of the rotor in the stator phases. qd LL , are the direct and quadrature 
inductances respectively. R is the stator resistance, p  is the number of pole pairs  and J  is the 
system moment of inertia. 
 
Model (8) has to be first reduced to Brunovsky form [15, 16] of (2) before quadratic 
linearization of (3) and (4) can be applied. For this, linear transformations as given in (9) due to 
Kuo [17] is used. 
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 Using the linear transformations (9) and (10), (8) can be reduced to Brunovsky form for 
two inputs (11) as below (where Aux ,,  and B are retained for simplicity of notation).  

 )()( xfBuAxx 2++=&  (11) 

where 
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41 aa , and 1c  are as defined in (10). 
 
Remark 1: The quadratic linearization for the case of single input given in section II can be 
extended to the case of two inputs in a straight forward way to the model (11). This is 
considered next. 
 
B. Conditions for Quadratic Linearization  
Theorem 1: Consider a four dimensional two input system  

 )()( xfBuAxx 2++=&  (12) 

 [ ] [ ]TT uuuxxxxx 214321 == ;  
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Then using the transformations [18] 

 )()( xxy 2φ+=  (13) 
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system (12) can be quadratic linearized if and only if  
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Proof: See Appendix. 
Remark 2: In the state feedback given by (14), the old input )(u is expressed in terms of new 
input )(v  and state )(x  and can be implemented as such without the need for inversion of a 
matrix. Thus, the issue of possible singularity as in the case of exact linearization does not arise 
in the approach proposed.  
 
Corollary 1: 
The PMSM model given by (11) is quadratic linearizable using the transformations (13) and 
(14). 
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Proof: Since ,0)()2(
1 =xf  the conditions for Theorem 1 are satisfied. Hence the result.   

 
C. Derivation of Linearization Transformations 
 In this section, linear zing transformations (13) and (14) are derived in their simplest form 
for ease of implementation. Consider the normal form of PMSM model given in (11). 
Choosing the arbitrary function 02

1 =)()( xφ and noting that ,)()( 02
1 =xf  (A.8) yields 02

2 =)()( xφ .

)()( x2
3φ is constructed   from (A.3), for 2=i  as 

 431
2

2
2

3 xxCxfx == )()( )()(φ  (15) 

)()( x2
4φ can be chosen for simplicity as 02

4 =)()( xφ . Hence  

 
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0

0
0

431

2
xxC

x)()(φ

 (16)

 

)()( x2α can be then be derived from (A.4) as 

 
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
323

4222
xxC
xxC

x)()(α

 (17)
 

)()( x1β can be  derived from (A.6) as  
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Using transformations (13) and (14), where )()( x2φ , )()( x2α and )()( x1β  are as derived in (16) 
– (18), system (11)  reduces to 
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where )(),( 3vyO  represents third and higher order terms. 
 

4. Tuning 
A. Tuning Formulae 
 When the PMSM model is quadratic linear zed, third and higher order terms are introduced 
into the system by the process of quadratic linearization even though the system model is not 
assumed to possess such higher order nonlinearity originally (refer (8) and (11)). This problem 
is approached in two ways. The first approach is theoretical leading to what is called 
'generalized quadratic linearization' which seeks to remove the second order nonlinearity in the 
model while at the same time cancelling all third and higher order terms introduced. The 
generalized quadratic linearization is shown to be applicable to a class of control affine systems 
[18,19]. PMSM and induction motors, for example, belong to the class.  
 The second approach which is empirical and applicable to PMSM model is discussed in this 
section. To account for higher order nonlinearities (introduced during quadratic linearization), 
and the unmodelled dynamics, tuning of the linear zing transformations against an actual PM 
machine on the lines similar to those used by Levin and Narendra[12] is proposed. Figure 1 
shows the block diagram for tuning. 1N  represents state feedback transformation (14) and 2N
represents coordinate transformation (13). The coefficients in the linear zing transformations 

1N and 2N  are updated based on the error between the outputs of quadratic linear zed system 
and a linear canonical form of the machine model (normal form) [20]. v Corresponds to the 
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input and )(my represents the output at the thm iteration. )(ˆ my corresponds to the output of 
the linear normal form for the same input. 
 Referring to Figure 1, it is required to propagate error first to 2N   and through the PMSM 
machine to .1N  Since the error cannot be propagated through the actual machine with an 
unknown model, the assumed PMSM model (11) is used instead. 

 
Figure 1. Block diagram for tuning of transformation 

 
At any step ‘m’, squared error (E) in Figure 1 can be calculated as 

 [ ] 2121 )ˆ()ˆ()( yyyyE TT −−== εε  (20) 

where [ ]T4321 εεεεε =  and yy ˆ−=ε  

To tune 1N  and 2N independently, the transformation matrices can be redefined as 
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where 1C  and ′
1C can be separately tuned. )()( x2α is not varied. 

It is easily derived that 2N can be tuned using update formula for 1C as 

 101 11111 <<Δ−−= ρρ );()()( mCmCmC  (23) 

where m  corresponds to the updating step, 1ρ corresponds to the accelerating factor and  
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For updating 1N , it is as summed that the steady state of the model (11) is reached within the 

tuning period  and the tuning rule for ′
1C is derived as  

 101 21211 <<′Δ−−′=′ ρρ );()()( mCmCmC  (25) 

where m  corresponds to the updating step, 2ρ correspond to the accelerating factor and 
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B. Stability Analysis 
 In order to check the asymptotic stability of (11), for autonomous system we put 0=u , 
which results in 

)()( xfAxx 2+=
•

 (27) 
 
Assuming A is strictly Hurwitz as given in Fang et al [21] and Greenberg [22], there exist, 
symmetric and positive – definite matrices P and Q which satisfy 

 QPAPAT 2−=+  (28) 

Consider the following candidate Lyapunov function 
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The time derivative of )(xV is given by 
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It can be verified that )()( xf 2 is locally Lipschitz, thus, there exists a positive constant M such 
that 
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On that account if the condition 

 MPQ >  (33) 

is satisfied, 0=x  is an asymptotically stable equilibrium. 
 This means that (11) is asymptotically stable under certain conditions. In order to check 
asymptotic stability of system (19), which results after quadratic linearization, for autonomous 
system we put 0=v , which results in 
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 Assuming A is strictly Hurwitz as given in Fang et al [21] and Greenberg [22], there exist, 
symmetric and positive – definite matrices P and Q which satisfy 
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Assuming that )3()(yO is locally Lipschitz, thus, there exists a positive constant 0M such that 
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for 21, yy  in  a neighborhood 0R  containing the origin. 
Then, the time derivative of )( yV is given by 
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On that account if the condition 

 PMQ 0>  (40) 
is satisfied, 0=y  is an asymptotically stable equilibrium. Stability analysis of PMSM model 
follows as a special case. 
 
5. Simulation Results 
 Application of coordinate and state feedback to linearized the PMSM model is simulated 
using MATLAB/SIMULINK [23]. Effectiveness of the tuning of the transformations is 
demonstrated through simulation results. A sample of the experimental data is given in this 
section. A larger set of the experimental data in [24] confirm the conclusions obtained. 
 The objective of simulation is to investigate the open loop steady state gain ( rω versus qu ) 
of the PMSM model under different operating conditions before and after linearization and  to 
verify if the system behaves like a linear system after linearization. Also, dynamic responses of 
the system is are studied for variations in reference speed and load conditions for uniformity of 
response as is characteristic of a linear system. Effectiveness of tuning is also investigated in   
on similar lines by obtaining dynamic responses of the system for different set points before 
and after tuning. 
 
A. Quadratic Linearization 
For the Interior PMSM, parameters are taken as follows: 
Stator resistance = 0.15ΩΩ ; q- axis Inductance qL = 1.2mH; d-axis Inductance  dL  = 

0.76mH; Flux induced in magnets  λ  = 0.013125 Wb; Moment of Inertia J  = 0.0008 kg 2m ; 
Friction factor B  = 1 N-msec; No. of pole pairs p  = 4. 
 Figure 2 shows the Simulink model of the PMSM which is constructed using speed block, 
torque block and control circuit as given in [23]. qu and du  are taken as inputs to the motor. 

 The PM model in figure 2 is especially configured for the IPM where qd LL ≠  (blocks 
shown in cyan colour are not included).  
 Figure 3 shows the linearization of PMSM (blocks shown in cyan colour are not included).

1L and 2L blocks in Figure 3 include the linear transformations (9) and 1N and 2N represent the 
nonlinear transformations (14) and (13). Prior to linearization, the open loop steady state gain 
of rω versus qu of the PMSM model is investigated and it is observed that the open loop 

steady state gain of rω  versus qu   (keeping du constant) varies under different operating 
conditions giving a standard deviation of over 50% of the average value of the gain. After 
linearization, the static gain variation corresponded to a standard deviation of a little over 3% 
of the average value of the gain thus verifying improved static linearity. 
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Figure 2. PMSM with qu and du as inputs 
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Figure 3. Linearization of PMSM model 
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 Combined closed loop responses of angular speed of the motor after linearization and 
before linearization are shown for reference speed of 120 rad/s in Figure 4, assuming zero load 
torque. The response after linearization is uniform over the reference input range as expected 
of a linear system. Also, the settling time of angular speed is considerably reduced. Figure5 
shows the combined closed loop speed responses when the load is varied after and before 
linearization for the same reference speed of 120 rad/s. Again, while the response is not 
uniform before linearization, the response after linearization is uniform as can be expected of a 
linear system. Here pk  and ik represent proportional constant and integral constant of the 
controller respectively. 
 

 
Figure 4. Combined Time response of angular speed in closed loop after and before 

linearization when set speed =120 rad/s; 2;50 == ip kk  
 

 
Figure 5. Combined Time Response of angular speed in closed loop after and before 

linearization when set speed = 120 rad/s T = 1.5 N-m; 2;50 == ip kk  
B. Simulation of Tuning 
 To simulate higher order loss, core loss is included in the Simulink model. The core loss 
caused by the permanent magnet (PM) flux and armature reaction flux, is a significant 
component of the total loss of a PMSM. The net core loss lcP  as given by Ramin 
Monajemy[25], for  PMSM is computed as follows: 
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where cR  represents core loss resistance, afλ represents magnet flux linkage, lcP represents 

core loss and rω   denotes  rotor electrical speed. The mechanical torque equation including 

core losses is given by (42), where lT  represents load torque and lcT  represents torque due 
core loss. 
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 PMSM Simulink model including core loss is given in Figure 2. The blocks representing 
core loss is indicated in cyan colour in Figure 2. The loss torque block represents the core loss. 
The tuning of the transformation is carried out as per update laws given in Equations (23) and 
(25) and is included in Figure 3 (indicated by blocks in cyan colour). The tuning is stopped 
after the error 01.0≤E .  
 Prior to tuning, the open loop steady state gain of  2y versus 1v of the PMSM model after 
linearization including core loss is investigated and it is observed that the open loop steady 
state gain of  2y  versus 1v varies under different operating conditions giving a standard 
deviation of over 70% of the average value of the gain. After tuning, the static gain variation 
corresponded to a standard deviation of a little over 2% of the average value of the gain thus 
verifying the effect of tuning. The combined closed loop response after tuning and before 
tuning is shown in Figure 6. The closed loop response before tuning is highly non-uniform 
when compared to the uniform response after tuning. The settling time of angular speed is also 
reduced considerably after tuning.  This verifies that the tuning can effectively cancel the 
higher order nonlinearity. 
 

 
Figure 6. Combined Time response of angular speed in closed loop after and before tuning   

when set speed = 110 rad/s;  2;50 == ip kk  
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C. Hardware Implementation 
 Hardware implementation is done using a PMSM machine to verify the effectiveness of the 
linearization technique proposed. Surface Mounted Permanent Magnet motor is used for the 
hardware implementation. The proposed system of Figure 7 was implemented. TMS320F2812 
DSP controller operating with a clock speed of  150 MHz was  used to carry out the 
implementation of Clarke’s and inverse Clarke’s transformations,  Park’s and inverse Park's 
transformations[26],  linear zing transformation, PI controller, and inverter switching for speed 
control.  A three phase insulated gate bipolar transistor (IGBT) power module was used for the 
inverter, which was supplied at a DC link supply voltage of 325 V. An incremental encoder 
(@2000 pulses/rev) was used to calculate the rotor speed and to determine the initial position 
of rotor position )(θ .  
 Figures 8 and 9 show closed loop speed responses before and after linearization under 
reference input change for a given load. Figures 10 and 11 show the closed loop speed 
responses before linearization when a load is applied and released respectively. Figures 12 and 
13 show the corresponding responses after linearization. The responses shown in Figures 8 to 
13 indicate speed in rpm and time in seconds.  
 It is seen from these figures that the dynamic responses of speed for step change in speed 
reference is smoother and more uniform for cases after linearization, when compared to the 
cases before linearization. Also it is seen that there are spikes in the responses before 
linearization. The dynamic responses of speed for load variations are also smoother and more 
uniform for the cases after linearization, when compared to the cases before linearization. The 
results presented here are necessarily samples of a more comprehensive set of experimental 
data obtained. It is verified by experimental results that a uniform dynamic response under a 
fixed controller can be obtained for the linear zed system for different load conditions and set 
point variations, in contrast to the case before linearization. 
 
 

 
Figure 7. Hardware Implementation Diagram 
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Figure 8. Speed control before linearization when load is 3 kg and sets peed is 3000 rpm 

 
 
 

 
Figure 9. Speed control after linearization when load is 3 kg and set speed is 3000 rpm 
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Figure 10. Speed control before linearization when speed is 1500 rpm and 1 kg is applied 

 
 
 

 
Figure 11. Speed control before linearization when speed is 1500 rp mand 1 kg is released 

 
 

 

Analysis and Application of Quadratic Linearization to the Control of Permanent

658



 
 

 
Figure 12. Speed control after linearization when speed is 1500 rpm and 1 kg is applied 

 
 

 

 
Figure 13. Speed control after linearization when speed is 1500 rpm and 1 kg is released 

 
6. Conclusion 
 Necessary and sufficient conditions for quadratic linearizability of a class of control affine 
systems are derived. PMSM model is shown to belong to this class. Linearzing transformations 
for PMSM model is derived. The necessary and sufficient conditions derived specifically for 
the PMSM model are new. Simulation studies are carried out using MATLAB/SIMULINK to 
verify quadratic linearization of PMSM. Also by simulating core loss, as an example of higher 
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order nonlinearity, it is shown that the linear zing transformations can be tuned against a 
canonical linear form of the machine to cancel the nonlinearity. Finally, a practical 
implementation of quadratic linearization on an actual PMSM machine is carried out with the 
help of DSP system together with PMSM and associated circuits. Experimental results are 
obtained which verify the theoretical results presented. 
 The approximate linearization technique is proposed to be extended to other types of 
electrical machines, such as, induction motor, wound synchronous motor etc. Necessary and 
sufficient conditions for quadratic linearization are to be derived for the other machine models 
as well. Necessary and sufficient conditions for quadratic linearization of a class of two-input 
control affine system which has been derived can be applied to any control affine system with 
quadratic nonlinearity, for example, heat exchanger process involving product of mass flow 
and temperature or mass transfer process involving product of mass flow and concentration.  
 
Appendix 
Proof of Theorem 1 
Proof: For the special class of system of the form (12), homological equations (6) and (7) can 
be rewritten as      
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By inspection, (A.2) can be reduced to  
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(A.4) and (A.6) containing arbitrary terms )()2( xkα  and )()1( xβ  respectively, can be satisfied 

for arbitrary .4,3);()2( =ixiφ  

Also, )()2(
1 xφ   being arbitrary, can be chosen such that  
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Since )()2(
3 xφ  is arbitrary, as mentioned above, (A.3) can be satisfied for .2=i  This together 

with the substitution of (A.7) into (A.5), results in (A.8) and (A.9) which are equivalent to 
homological equations (A.1) and (A.2). 
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To prove necessity, differentiating (A.8) , with respect to 4,3; =kxk and denoting  
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Using (A.7), (A.10) and (A.11) can be written as  
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That is  
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Further by differentiating (A.12) with respect to 3x , one can get 
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Using (A.7), it follows that 
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The necessity of the result thus follows. 
To prove sufficiency, it is required to show that assuming (A.13) and (A.14), )()2(

2 xφ  given by 
(A.8) has to satisfy (A.9). 
Differentiating (A.8) with respect to 3x  and rearranging 
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Using (A.7), (A.15) becomes 
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Expanding the linear form )()2(
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and using (A.13) and (A.14), (A.17) reduces to  
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Substituting (A.18) into (A.16) yields 
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As per (A.7), )()2(

1 xφ  which can be arbitrary, is to be chosen as a function of 1x  and 2x only. 

Choosing the derivative )()(
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yields from (A.19) that  
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Differentiating (A.8) with respect to 4x  and rearranging, one can get 
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According to the assumption (A.7) and using (A.13), it follows from (A.21) that 02
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Hence (A.9) is satisfied . Hence the sufficiency condition is proved. 
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