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We present the single-slit diffraction of the arbitrary vector fields with different parameters m, n, and φ0 
theoretically and experimentally. The single slit covers the polarization singularity in the center and therefore 
the influence of the polarization singularity on the diffraction fringes is analyzed. The experimental results 
which agree well with the simulation results show that the total intensity of the diffraction field is related 
only to the topological charge m, but the polarization distribution of the diffraction field is related to all 
the parameters m, n, and φ0. Therefore, the diffraction patterns allow to determine all the parameters of the 
arbitrary vector fields. 
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The homogeneous or inhomogeneous state of polarization  
of light is one of the most fundamental properties of 
the electromagnetic field. This important property is 
widely used in various fields, such as optical imaging[1], 
particle trapping[2], particle manipulation[3], and nonlin-
ear optics[4]. Especially, when the reliable and flexible 
method of generating arbitrary vector beams was pro-
posed by Wang et al.[5] and the method is improved to 
generate an arbitrary space-variant vector beam with 
structured polarization and phase distributions[6]. There 
are many studies on the effects and the application of 
the vector beams[7–10], for instance, the peculiar interfer-
ence behaviors of the vector fields in Young’s two-slit 
configuration was given by Li et al.[11], and the results 
have potential applications such as characterizing the 
topological properties of the arbitrary vector fields. But 
Young’s two-slit configuration blocked the polariza-
tion singularity of the vector beams, while the polar-
ization singularity is the important part of the vector 
beam and have important applications in the precise 
measurement of the deformation and displacement of 
submicrometer particles and life science research[12–14]. 
Besides, the motion of polarization singularities takes 
place by varying waist width ratio, amplitude ratio, and 
propagation distance[15], especially in the paraxial[16,17]  
and diffraction conditions[18,19]. Diffraction has been 
employed extensively to reveal the unusual phase distri-
bution of the phase singular beam[20]. In order to design 
optical components and imaging systems using vector 
beams, the single-slit diffraction of the arbitrary vector 
beams is applied to explain the phase and other charac-
teristics, in particular, phase and other characteristics 
containing the polarization singularity of the arbitrary 
vector beams. 

In this letter, we explore the single-slit diffraction of 
the arbitrary vector fields theoretically and experimen-
tally. The method of generating arbitrary vector beams 
proposed in Ref. [5] is applied in this letter and the 

final vector beams are synthesized from the left- and 
right-hand polarized beams which load the phases with 
special spatial distribution. Thus, the diffraction pat-
terns of these fields are firstly observed, because there 
are many novel effects of the interference in the double 
slit[21] and diffraction in the single slit[22]. The results 
show that the polarization singularity at the center of 
the light has a great influence on the diffraction pattern. 
Because the single-slit diffraction patterns structure 
carry the information of the phase and polarization dis-
tributions of the arbitrary vector field, so the structure 
and polarization distribution of the diffraction patterns 
will also unveil the characteristics of the arbitrary vec-
tor light field. Besides, our research on the phenomenon 
of vector near-field diffraction has a guiding significance 
for the study of the limited transmission[23], the spatial 
and temporal evolutions of the vector optical field[24], 
and the interaction of vector light with matter[25].

The field distribution of the single-slit diffraction 
results from the interference of the coherent light and 
the fringe distribution is determined by the phase dis-
tribution. It is noticed that the arbitrary vector beams 
in our experiment are the superpositions of two orthog-
onal circularly polarized beams. Firstly, we propose the 
single-slit diffraction of the left- and right-hand circu-
larly polarized beams carrying phase which controls the 
polarization of the vector beams. 

In the method, the phase loading on the spatial light 
modulator is δ = mφ + 2nπρ/ρ0 + φ0, −1 order diffraction 
light modulated for left-hand polarized beam of unit 
amplitude illuminates the narrow slit, and the field just 
behind the slit is given by

	 1
0 0rect exp[i( 2 / )],pr r−

 
= + +  

x
u m n

b
f f � (1)

where b is the slit width, ρ0 is the radius of the arbi-
trary vector field and initial phase φ0, while m and n 
are the indices of the angular and radius, respectively. 
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Accordingly, diffracted +1 order light modulated for 
right-hand polarized beam illuminates the narrow slit, 
and the field just behind the slit is

	 1
0 0rect exp[ i( 2 / )].pr r+  

= − + +  
x

u m n
b

f f  � (2) 

Figure 1 shows the field just behind the slit of the left-
hand polarized beams, where the white circular spot 
represents the arbitrary vector beam. The single slit is 
in the middle covered by the polarization singularity. 
The phase on different positions of the single slit is 
marked in Fig. 1, where the phase 2nπρ/ρ0 is ignored, 
which only changes the phase distribution in vertical 
direction.

For the plane wave, the phase in the slit has uniform 
distribution. So the diffraction fringes are parallel to 
the slit and have sinc2 intensity distribution[10] as

	
2

0 2

sin ; sinb p
b , 

lb
= =I I b a � (3)

where β represents the phase difference between the 
waves reaching the point of observation from two points 
in the slit and α is the diffraction angle. For the plane 
wave, the phase in the slit is the same, so the straight 
fringes will appear in the diffraction pattern. For the 
phase difference caused by path difference between 
the interfering waves at any point, the arbitrary vec-
tor beams remain the same as a uniform plane wave, 
but will change the phase distribution in the plane just 
behind the slit.

 Thus, when an arbitrary vector beam illuminates the 
slit, the intensity pattern will be a sinc2 distribution on 
the whole. But owing to the change in the phase distri-
bution, the value of β will be modified as

	 sinp
b g ,

l
= +′ b a � (4)

where γ is the additional phase due to the non-uniform 
phase distribution of the arbitrary vector beam in the 
slit, and can be given by phase change along left and 
right edges of the slit. 

Here the width of the slit is considered to be infinitely 
small, so the relative phase distribution in the bottom 

Fig. 1. Field just behind the slit of the left-hand polarized beam. Fig. 2. Analysis of the polarization state in the slit.

of the slit is uniform plane, whereas 2mπ is added in 
the upper portion because of the abrupt phase. How-
ever, the relative phase distribution changes largely in 
the center where the polarization singularity is located 
as shown in Fig. 2. 

In order to compute the additional phase γ, we write 
the complex amplitude of +1 order diffraction beam as

	 ( , ) ( i ) exp(i ( , )),m mu x y x y r x yd= + = � (5)
where δ(x, y) = mφ + φ0 = arg[(x+iy)m]. Equation (5) can 
be solved as

	 0 02 2

i( , ) ln .
i
m x yx y m

x y
d

 +
= + = + 

+  
f f f � (6)

As shown in Fig. 1 we obtain the additional phase γ 
along y from Eq. (6) by setting x = −b/2 and x = b/2 as

	 ( /2) iln .
2i /2 il r

ym
y

g d d
 − +

= − =  + 
b

b
� (7)

Therefore, we divide the whole into three portions, σ1 
in the upper, σ3 in the bottom, and σ2 in the center. In 
this case, in the top σ1 and the bottom σ3 portions, γ 
values are 2mπ and 0, respectively. In the center σ2 por-
tion, the value of γ varies continuously from 0 to 2mπ. 

Therefore, we can consider that the diffraction fringes 
in σ1 and σ3 regions are parallel to the slit. Because of 
the additional phase 2mπ, there will be displacement 
of the diffraction fringes in the upper and bottom por-
tions. The bright fringes are where sinβ = 1 can be 
deduced from Eq. (3). In other words, the bright fringes 
in the bottom are near βi = ±iπ + π/2 where i is con-
stant. But in the upper portion, bright fringes are near 
βi = -2mπ ± iπ + π/2, so there are 2mπ differences for 
them in the upper and lower halves of the slit. But in 
the middle σ2 portion, the value of γ varies continuously 
from 0 to 2mπ, so each bright fringe in the upper half 
portion bends near the center and joins the mth bright 
fringe to the left in the bottom. Certainly, if opposite 
topological charge −m is used, the bending will take 
place in the opposite direction and there will be two 
opposite phenomena in both cases for ±1 order diffrac-
tion beams.
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But for the distribution of the stripe observed on 
the CCD, the displacement for the fringe will also 
be influenced a lot by a and b, where a is the dif-
fraction distance. It is well-known that there will be 
dark fringes when β = bπsinα/λ = ±π, ±2π, ±2π,… in 
the bottom, it means sinαi = ±iλ/b. We can consider 
the diffraction angle αi = ±iλ/b in paraxial approxima-
tion. So the dark fringe of the diffraction will present at  
xi = ±iaλ/b, but it is xi = ±(m + i)aλ/b for the upper por-
tion of the fringes. So the displacement is τx = ±maλ/b, 
and the symbol + expresses that the fringes bends to 
right, whereas the symbol - is the opposite. 

In our experiment, we can deem that the left- and 
right-hand polarized beams are not coherent, so the 
total intensity of the single-silt diffraction field is the 
superposition of that of the left- and right-hand polar-
ized beams. Therefore, the intensity of the single-slit 
diffraction field can be given as

	
2 2

1 1
1 1 0 02 2

1 1

sin sin1 .
2

I I I I I
b b

b b
− +

− +
− +

 ′ ′
= + = + ′ ′ 

 � (8)

On the basis of above theories and the Huygens–Fres-
nel principle, the polarization distribution of single-slit 
diffraction field in Fig. 2 can be analyzed as follows. 
In the σ1 region, the polarization distribution can be 
considered constant across the narrow slit, so the dif-
fraction patterns of the x-component can be given as

	 2 2
1 1cos cos ( ),xI I Iq q− += + − � (9)

where θ is the polarizing angle when φ = 0. In the same 
way, the y-component is 

	
2 2

1 1sin ( ) sinyI I Iq q.− += − +
� (10)

It is also the same in the σ3 region  but θ is the polar-
izing angle when φ = π. In the σ2 region, the polar-
ization state changes largely, but in order to analyze 
this polarization distribution, the approximation can be 
given as
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where c(y = y0) is constant which means approximate.

We now experimentally explore the single-slit diffrac-
tion of the arbitrary vector field. The arbitrary vector 
beam is experimentally generated using He–Ne laser at 
632.8 nm as the light source. The created vector field 
falls normally on the slit with b = 0.2 mm, but the 
diffraction distance is not a fixed value which will be 
changed as the complexity of the diffraction patterns. A 
polarizer can be inserted between the slits and CCD, so 
the diffraction patterns of the x- and the y-components 

will be acquired. According to the analysis of Fig. 2, the 
stripe displacement of the upper and lower parts in the 
diffraction field is τx = ±maλ/b, which is 0.63–1.20 mm  
in our experimental conditions (b = 0.1 mm, a = 10–30 cm),  
and the displacement can be observed in our CCD 
(576×768 pixels, 6×8 (mm)).

Firstly the single-slit diffraction patterns with dif-
ferent arbitrary vector beams are observed as shown 
in Fig. 3. The first row shows the field distribution 
through the horizontal polarizer and the diffraction 
patterns of the vector fields with m = 1, n = 0, φ0 = 0, 
the left- and right- hand polarized beams are exhib-
ited orderly from left to right. The second row shows 
the simulation results, while the third and fourth rows 
show that of m = −1, n = 1, and φ0 = π/4.

Figure 3 shows the displacement of the stripes in the 
upper and bottom regions and the slope of the stripes 
in the middle agrees well with our theory. All the fringes 
have the same period of τx = bλ/a in the x-direction, but 
the stripes in the upper region have one order displace-
ment to the left for the −1 order diffraction light and 
that is to the right for the +1 order. The polarization 
singularity in the middle region leads to the slope of the 
fringes in σ2 region and the inclined stripes connect the 
vertical stripes in the upper and bottom region. The 
single-slit diffraction field is the superposition of that 
with the left- and right-hand polarized beams. Besides, 
the single-slit diffraction patterns of the arbitrary vec-
tor beams are only related to the topological charge m. 

Figure 4 shows the experimental and simulation results 
for the complex vector beams with m = 2, n = 0, φ0 = 0, 
and m = 3, n = 0, φ0 = 0. The diffraction patterns become 
complicated especially in the middle region with the 
increase in m, the total intensity matches well with the 
superposition of that of the ±1 order beams. In the center,  
the diffraction pattern exhibits a chessboard structure, 
because they are the superpositions of the slope stripes 
in the center of the −1 and +1 order diffraction lights. In 

Fig. 3. Experimental and simulation results of the single-slit dif-
fraction patterns of vector field with m = 1, n = 0, φ0 = 0, and m = −1,  
n = 1, φ0 = 0.
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Fig. 4. Experimental and simulation results of the single-slit 
diffraction patterns of vector field with m = 2, m = 3, n = 0, 
φ0 = 0.

other words, there are periodic bright and dark stripes 
both in the x- and y-directions in σ2 region, and the 
number of the bright and dark fringes in the y-direction 
is 2m−1. It is bright in the center when m is even as 
shown in the first row, whereas it is dark when m is odd 
as shown in the third row.

Figures 3 and 4 show that the single-slit diffraction 
fields only comply with the topological charge m and 
the other parameters n and φ0 do not work. But these 
parameters play a very important role in the distri-
bution of the polarization, so we explore the polariza-
tion distribution of single-slit diffraction fields of the 
arbitrary vector beams with different m, n, φ0. Figure 
5(a) shows the distribution of the polarization of the 
vector beams with m = 1, 2, and 3, n = 0, φ0 = 0 and  
Fig. 5(b) shows the simulation results.

As shown in Fig. 5, the diffraction patterns of the 
vector fields exhibit the spatial structure in the x- and 
y-(slit) directions described by Ix and Iy. The x-compo-
nent of the diffraction patterns is discussed firstly. For 
the first row, Ix = I−1×cos2(π/2)+I+1×cos2(−π/2) = 0 in 
σ1, and Ix = I−1×cos2(3π/2)+I+1×cos2(−3π/2) = 0 in σ3, so 
there is no fringe in these regions. But in σ2, Ix can be 
given as Ix

(y = y0) = c(y = y0)×I×cos2θ(x = b/2,y = y0). Therefore, θ 
is from π to π/2 when y is from 0 to ∞, then Ix is from 
I to 0. This trend is contrary to the periodicity of the 
central column fringe in the y-direction, but complies 
with the next columns, so the fringes of only odd 
number columns are retained. For the y-component,  
Iy = I−1×sin2(π/2)+I+1×sin2(−π/2) = I in σ1 and Iy = I−1×sin2 

(3π/2)+I+1×sin2(−3π/2) = I in σ3, so the fringes of Iy 
are the same with that of I. In σ2, Iy

(y = y0) = c(y = y0) 

×I×sin2θ(x = b/2, y = y0), so Iy is from 0 to I when y is from 
0 to ∞. This trend is contrary to the periodicity of 
the even number columns fringe, but complies with the 
next columns, so the fringes of only even number col-
umns are retained which are the dark fringes in this 
region.  That means no fringe in this region. 

Fig. 5. (a) Experimental results of the single-slit diffraction 
patterns of vector field with m = 1, 2, 3, n = 0, φ0 = 0, and  
(b) simulation of the single-slit diffraction patterns of vector 
field with m = 1, 2, 3, n = 0, φ0 = 0. The right columns show the 
distribution of the x- and y- components.

For the vector beam with m = 2 as the second row 
in Fig. 5, Ix = I−1×cos2(0) + I+1×cos2(0) = I in σ1 and  
Ix = I−1×cos2(2π)+I+1×cos2(−2π) = I in σ3, so Ix is the same 
with I. In σ2, Ix

(y = y0) = c(y = y0)×I×cos2θ(x = b/2,y = y0), θ is 
from 2π to π when y is from 0 to ∞, then Ix is from 
I to 0 to I. This trend is contrary to the periodicity 
of the even number columns fringes and complies with 
the next column. As a result, the fringes of only even 
number columns are retained in this region. For the 
y-component, Iy = I−1×sin2(0) + I+1×sin2(0) = 0 in σ1, and  
Iy = I−1×sin2(2π)+I+1×sin2(−2π) = 0 in σ3, therefore there 
is no fringe. In σ2, Iy

(y = y0) = c(y = y0)×I×sin2θ(x = b/2, y = y0),  
in the same way, Iy is from 0 to I to 0 when y is from 
0 to ∞. Therefore the trend is contrary to that of the 
x-component, so the fringes of only odd number col-
umns are retained in this region.

We can deduce that there is no fringe for the x-com-
ponent in σ1 and σ3 when m is odd. But in σ2, the fringes 
of only odd number columns will be retained and the 
number of the bright and dark fringes in the y-direction 
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is 2m − 1. For the y-component, Iy is the same with I 
in σ1 and σ3, but in σ2 , the fringes of only even number 
columns will be retained and the number of the bright 
and dark fringes in the y-direction is also 2m − 1. How-
ever, when m is even, Ix will swap with Iy. The last row 
of Fig. 5 proves our analysis very well.

 Figure 6 shows the diffraction patterns and the 
polarization distribution of the vector beams are m = 1,  
n = 0, and φ0 = 0, π/4, 2π/4, 3π/4. The diffraction 
patterns of vector light fields exhibit different spatial 
structures as different φ0. The first row in Fig. 6 is same 
as Fig. 5 and has been analyzed. For the second row 
with φ0 = π/4, Ix = I−1×cos2(π/4) + I+1×cos2(−π/4) = I/2  

in σ1 and Ix = I−1×cos2(5π/4) + I+1×cos2(−5π/4) = I/2 in 
σ3. As a result, Ix is the same as I with certain weak 
intensity. In the σ2 region

0 0 0( ) ( ) ( )2 2
1cos cos ,

4 4
y y y y y y

xI c I c Ip p
q q= = =   

= + + − + =      

� (13)
where θ is the polarizing angle when φ0 = 0. So fringes 
of Ix remain that of I.

For the y-component, Iy = I−1×sin2(π/4) + I+1×sin2(−π/4) 
= I/2 in σ1 and Iy = I−1×sin2(5π/4) + I+1×sin2(−5π/4) = I/2  
in σ3. In the σ2 region 

0 0 0( ) ( ) ( )2 2
2sin sin ,

4 4
y y y y y y

yI c I c Ip p
q q= = =    

= + + − + =        

� (14)

which is the same as Ix. The vector beam with m = 1, 
n = 0, φ0 = 3π/4 is the same as shown in the fourth 
row. In fact, according to the calculated process, we 
can deduce that the results of vector beam with m = 1, 
n = 0, φ0 = mπ/2 + π/4 will all be the same.

The third row of Fig. 6 shows the results of vector 
beam with m = 1, n = 0, φ0 = 2π/4. Ix = I−1×cos2(π) + 
I+1×cos2(π) = I in σ1 and Ix = I−1×cos2(2π) + I+1×cos2(−2π) 
= I in σ3, so the fringes in these regions are the same as 
that of I. But in σ2 region, 
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( ) ( ) 2 2
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= =

=
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= + + − +        

= � (15)

where θ is from π to 3π/2 when the y is from 0 to ∞, which 
is the same with Iy in the first row. So Ix with m = 1,  
n = 0, φ0 = 2π/4 is the same with the Iy with m = 1,  
n = 0, φ0 = 0. Furthermore, Iy with m = 1, n = 0, φ0 
= 2π/4 is the same with Ix with m = 1, n = 0, φ0 = 0, 
which is shown in the first and third rows of Fig. 6. 
Besides, we can deduce that the polarization distribu-
tion is one cycle of vector beams with φ0 from 0 to π 
(Fig. 6). 

Lastly, the polarization distribution of vector beams 
with different n is discussed. Figure 7(a) shows the dif-
fraction patterns and the polarization distribution of 
vector beams with m = 1, φ0 = 0 and different n where  
n = 0.5, 1, 1.5 and Fig. 7(b) shows the simulation 
results.

As shown in Fig. 7, the diffraction patterns exhibit 
the spatial periodicity structure in the y-(slit) direction 
when δ changes as radius. Because the phase 2nπρ/ρ0 
can be supposed to be uniform from left to right, the 
change in the phase distribution is only in the vertical 
direction. In the upper half portion, Ix = I−1×cos2(πρ/ρ0) 
+ I+1×cos2(-πρ/ρ0) = I×cos2(πρ/ρ0). In the bottom portion, 
Ix = I−1×cos2(−πρ/ρ0) + I+1×cos2(πρ/ρ0) = I×cos2(πρ/ρ0).  
θ is from 0 to π when y is from 0 to ρ0, then Ix is from I 
to 0 to I which is n periodic change in the y-direction.  

Fig. 6. (a) Experimental results of the single-slit diffraction 
patterns with vector beam with m = 1, n = 0, φ0 = 0, π/4, 2π/4, 
3π/4 and (b) simulation results of the single-slit diffraction 
patterns with vector beam with m = 1, n = 0, φ0 = 0, π/4, 2π/4, 
and 3π/4.
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The center is bright and in the bottom it is the same. 
For the y-component, in the upper half portion,  
Iy = I-1×sin2(πρ/ρ0) + I+1×sin2(-πρ/ρ0) = I×sin2(πρ/ρ0), so 
Iy is from 0 to I to 0, so there is also n cycles periodic 
change in the y-direction but the center is dark, and 
it is the same in the bottom. Furthermore, it is the 
same with n = 1.5, 2 as shown in the second and third 
rows of Fig. 7. We can draw the conclusion that the 
phase 2nπρ/ρ0 does not contribute to the total intensity 
of the single-slit diffraction but will change both the  
x- and y-components to be periodical which is 2n 
cycles. The fringe is bright in the center for Ix while it 
is dark for Iy when m is odd, and that is opposite when 
m is even. 

In conclusion, we present single-slit diffraction of the 
arbitrary vector fields with different parameters m, n, 
and φ0 theoretically and experimentally. The single 

Fig. 7. (a) Experimental results of the single-slit diffraction pat-
terns with vector beam with m = 1, φ0 = 0, n = 0.5, 1, 1.5 and  
(b) simulation results of the single-slit diffraction patterns with 
vector beam with m = 1, φ0 = 0, n = 0.5, 1, 1.5.

(b)

slit covers the polarization singularity in the center. 
Firstly, we figure out the relationship between the dif-
fraction patterns and the parameters m, n, and φ0. 
In particular, the influence of the polarization singu-
larity on the diffraction fringes is analyzed. The total 
intensity of the diffraction field is related only to the 
topological charge m, but the polarization distribution 
of the diffraction field is related to all the parameters 
m, n and φ0. Therefore, the diffraction patterns allow 
to determine all the parameters of the arbitrary vec-
tor fields. The experimental results agree well with the 
simulation results. In addition, our research on the phe-
nomenon of vector near-field diffraction has a guiding 
significance for the study of the spatial and temporal 
evolutions of the vector optical field and the interaction 
of vector light with matter.
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