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Abstract

Issues related to the implementation of dynamic programming for optimal
control of a three-dimensional dynamic model (the fish populations man-
agement problem) are presented. They belong to a class of models called
Lotka-Volterra models. The existence of bionomic equilibria will be consid-
ered. The problem of optimal harvest policy is then solved for the control of
various classes of its behaviour. Therefore the focus will be the optimality
conditions by using the Bellman principle. Moreover, we consider a differ-
ent form for the optimal value of the control vector, namely the feedback or
closed-loop form of the control. Academic examples are studied in order to
demonstrate the proposed methods.
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1. The problem

Currently the fish populations in the Baltic Sea have many problems,
which are mainly caused by human influence. Some fish species are catched
too much. The fundamental risk of overfishing is that a stock (occurrence
of species in a given region) is so decimated that the natural regeneration
ability is not given and at worst the species die out. The Living Planet Index
for marine species of the WWF shows an average decrease of 14 % between
1970 and 2005 (see Living Planet Report 2008). The overfishing is the main
cause apart from possible environmental factors (climate change, pollutants,
etc).

Therefore, the goal of the Baltic Sea fishermen must be conscientious, by
the policy prescribed regulations and the advance (such as from International
Council for the Exploration of the Sea) to protect the Baltic Sea fauna deal.
A responsible management must reduce the fishing effort to an environmen-
tally acceptable level and call for the cooperation among the participating
countries. This is of utmost importance, since the economic value of the
catches depend on the stock and the biodiversity of the Baltic Sea.

Several interacting species are modeled, which inhabit in a common habi-
tat with limited resources. So, a dynamic system is to be studied, which
depends on several states and controls (e.g. the number of fishing boats).
A typical question for such systems is to find a controller that regulates the
system in a desired target. In many applications a cost functional is to be
optimized, this is usually a functional of the state trajectory and the con-
trols of the system. The profit of a sustainable fishing industry should be
maximized without disappearance of the species.

In this paper necessary (and sometimes sufficient) optimality conditions
are derived. Numerical methods are obtained from the optimality conditions
in order to calculate (approximately) optimal controls.

2. Optimal control problems

Whenever a state function depending on the time is described by an ordi-
nary differential equation which depends on the control variable, it is called a
control system of ordinary differential equations. Optimal control is related
to the development of space flight and military researches beginning from
the 1950s. We can find the applications of the control theorie in economics,
in chemistry or even in population dynamics. The general task of optimal
control is defined as follows:
Let Ω ⊂ Rm be a nonempty (often convex and closed) control region. Let
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g, q, f be given smooth functions:

q : Rn+1 → R
f : R× Rn × Ω→ Rn

g : R× Rn × Ω→ R.

A continuous and piecewise continuously differentiable function x(·) : R →
Rn (state function) as well as a piecewise continuous (or piecewise constant)
function u(·) : R→ Ω (control function) are called admissible, if the ODE

ẋ(t) = f(t, x(t), u(t)), t0 ≤ t ≤ T

x(t0) = x0

is valid. We are looking for admissible pairs (x(·), u(·)), which maximize an
objective (cost) functional of Bolza type:

J(u(·)) =

T∫
t0

g (t, x(t), u(t)) dt+ q(T, x(T ))→ max
u(·)

(1)

Often the optimal control can be calculated by methods using the Pontryagin
maximum principle or by solving the Hamilton-Jacobi-Bellman equation.

3. Extended Lotka-Volterra models with m populations

A logistic model of development for a two-population system can be writ-
ten in the following form (see [13]). Let be ε1, ε2 growth coefficients, γ1, γ2

the phagos coefficients and K1, K2 given numbers (capacities or logistical
terms). We denote the population sizes as x1 and x2.
The differential equations for the development of the populations are

ẋ1(t) = x1

[
ε1

(
1− x1(t)

K1

)
− γ1x2

]
ẋ2(t) = −x2

[
ε2

(
1− x2(t)

K2

)
− γ2x1

] .

We denote generally:
εi are growth coefficients, γij are the phagos coefficients of the population i
with respect to the population j and Ki are logistical terms.
We denote the control of the fish populations ui(t) (it can be a regulation
of the fishing, e.g. the number of the fishing boats if ui(t) ∈ N), pi are fish
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prices (per ton), ri are catch proportionalities. Therefore, the development
of m populations can be described by a generalized system

ẋi(t) = εixi(t) ·
(

1− xi(t)

Ki

)
−

m∑
j=1

γij
xi(t)

Ki

xj(t)

Kj

− ui (t) rid ·
xi(t)

Ki

,

where xi(0) = xi0 are given for i = 1, . . . ,m.
The objective function (the profit) is to be maximized:

J (u) =

T∫
0

{
m∑
i=1

piui(t)rid ·
xi(t)

Ki

− cd ·
m∑
i=1

ui(t)

}
e−δtdt→ max

u(·)

under the restrictions 0 ≤ ui(t) ≤ umax
i , i = 1, . . .m, 0 ≤ t ≤ T.

c are the cutter costs per day and d is the number of days in which we catch.
If we calculate the present value of future profits, we consider a discount rate
e−δt. This plays an important role in economic models.

4. Bellman’s principle

A key aspect of dynamic programming is the Bellman principle. The
basic idea is to calculate the optimal solutions of many small subproblems
and then to compose these subsolutions to a suitable global optimal solution.
It was formulated in 1957 by Bellman.

”
An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must be an optimal policy with
regard to the state resulting from the first decision.“[15, 370-371]

This idea can be used to derive a necessary and sufficient condition.
We consider here two forms of the optimal controls of (1), namely the

open-loop form and the closed-loop form. The closed-loop form û(t, x) gives
the optimal value of the control vector as a function of the time and the
current state.

The form of the optimal control vector derived via the necessary condi-
tions is called open-loop. However, even though the closed-loop û(·, ·) and
open-loop u∗(·) controls differ in form, they yield identical values for the opti-
mal control at each date of the planning horizon. It follows û(t, x∗(t)) = u∗(t).
The open-loop form gives the optimal value of the control vector as a func-
tion of the time and the initial values of the state vector. The closed-loop
form of the optimal control is a decision rule, for it gives the optimal value
of the control for any current period and any admissible state in the current
period that may arise. In contrast, the open-loop form of the optimal control
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