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 Summary 

SUMMARY 

Understanding the processes affecting the distribution of an avian (and every other) species in time 

and space necessitates the inclusion of a variety of factors. Choice and utilisation of a habitat should 

be seen in the context of energetic costs and benefits, as organisms are believed to distribute in order 

to enhance their survival. In this thesis, the distribution and habitat selection of the Common Scoter 

Melanitta nigra (Linneaus, 1758) a benthic-feeding sea duck spending much of its non-breeding season 

in the eastern German Bight, southeastern North Sea, was investigated with regard to seasonal 

differences. As Common Scoters are located in German Waters predominantly during their moulting 

and wintering season and as these periods reflect different energetic needs, this seasonal variability is 

expected to have an influence on how they distribute themselves relative to their food and 

disturbance.  

To analyse distribution patterns and habitat selection, Common Scoter count data from Seabirds at 

Sea surveys collected in 2006-2017 were used, either from a long term data base (FTZ) or obtained 

from additional surveys conducted during the PhD. To relate bird distributions to their prey base, 

benthos and sediment samples were collected in separate moulting and wintering areas to investigate 

benthic community structures. In addition to sediment samples, information on supplementary 

environmental parameters (such as water depth or bed shear stress) was gathered during surveys or 

taken from the literature. To determine, which parameter(s) might have the greatest influence on 

Scoter distribution, Generalised Additive Models (GAMs) with Integrated Nested Laplace 

Approximation (INLA) were performed for the moulting and wintering season.  

The results of this thesis confirmed the long term consistency in Common Scoter moulting and 

wintering distributions along the coasts of Schleswig-Holstein. They also revealed a recent southbound 

shift in dispersal patterns with more Common Scoters residing in this area during both periods. A 

change in prey composition caused by one particular bivalve species, the invasive alien razor shell Ensis 

leei (M. Huber, 2015) could be a possible cause for this. Due to a higher flesh-to-shell ratio and an 

exceptionally high abundance compared to other bivalves, this species seems to be more profitable. A 

comparison of core moulting and wintering areas revealed distinct differences in benthic community 

structures, yet the profitability of both was similar. Contrasting the distribution in two different marine 

environments - the German North and the Danish Baltic Sea - illustrated that despite differences in 

terms of habitat characteristics, Common Scoters showed the same dispersal patterns. This supports 

the hypothesis that they distribute in order to maximise energetic intake rates while simultaneously 

minimising the costs of obtaining resources. Modelling the distribution of Common Scoter in relation 

to environmental parameters highlighted the importance of adequately matched spatial and temporal 
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scales. While the results for the wintering models were quite promising (about 25 % of explained 

deviance in the best fitting model), those for the moulting models were less convincing (6.53 % of 

explained deviance in the best fitting model). Water depth, distance to coast, bed shear stress and 

proportion of fine sand were identified as the most influential factors significantly affecting Common 

Scoter distribution in all models. The selected benthos variables were not as influential as expected, 

probably due to a mismatch in spatial and temporal scales. While ship traffic had no significant 

influence in any model, the smoothing curves clearly showed that the presence of ships had strong 

negative impacts especially in the moulting season.  

Overall, the current thesis provides new insight and more detailed knowledge into how Common 

Scoter distribute themselves in response to habitat characteristics during the course of the year. 

Recent shifts in distributions, likely based on changes in prey abundance and profitability of a single 

bivalve species, were identified. While a previous study proved that environmental parameters can be 

used to model Common Scoter distribution in the eastern German Bight on a small spatial scale, this 

thesis made the first attempt to expand this approach to a much larger area. Thereby, the most 

influential variables impacting Common Scoter dispersal during two different seasons could be 

identified. While this approach will need more refinement, it can be used to predict their distribution 

based on (a)biotic parameters including valuable information on the effects of seasonal variability. 

These findings will not only help us to further our understanding of the ecology of Common Scoter, 

which has long suffered from a lack of research interest. They will also be relevant for future 

management and protection strategies. 



 

 
 

11 

 Zusammenfassung 

ZUSAMMENFASSUNG 

Die Untersuchung von räumlichen und zeitlichen Verbreitungsmustern von Organismen erfordert die 

Berücksichtigung einer Vielzahl von Faktoren. Die Wahl und Nutzung eines Habitats müssen im Hinblick 

darauf betrachtet werden, dass Organismen sich vorranging in einer Art und Weise verbreiten, die ihre 

Überlebenschancen erhöht. In der vorliegenden Doktorarbeit wurden die Verbreitung und 

Habitatwahl der Trauerente Melanitta nigra (Linneaus, 1758), einer sich von benthischen Organismen 

ernährenden Meeresentenart, die außerhalb der Brutsaison in hohen Dichten in der östlichen 

Deutschen Bucht, südöstliche Nordsee, zu finden ist, unter dem Aspekt von saisonalen Unterschieden 

analysiert. Trauerenten finden sich in deutschen Meeren hauptsächlich während der Mauser- und 

Winterzeit. Da diese beiden Zeiträume von unterschiedlichen energetischen Anforderungen geprägt 

sind, ist davon auszugehen, dass diese saisonale Variabilität einen Einfluss auf die Verbreitung von 

Trauerenten im Hinblick auf Nahrungsverfügbarkeit und Störungsquellen hat.  

Zur Analyse der Verbreitungsmuster und Habitatwahl wurden Daten aus Seevogel auf See (SAS) 

Zählungen aus den Jahren 2006-2017 verwendet, die entweder einer bereits existierenden 

Langzeitdatenreihe entnommen (FTZ) oder während der Zeit der Doktorarbeit gesammelt wurden. 

Ergänzt wurde dies durch die Sammlung von Benthos- und Sedimentproben in einem zentralen 

Mauser- bzw. Wintergebiet, um die Zusammensetzung von benthischen Gemeinschaften zu 

untersuchen. Neben den Sedimentproben wurden Information zu weiteren Umweltparametern (wie 

zum Beispiel Wassertiefe oder Schubspannung) erhoben oder anhand von Referenzwerten aus der 

Literatur bestimmt. Um herauszufinden, welche(r) Umweltparameter den größten Einfluss auf die 

Trauerentenverbreitung haben (hat), wurden Generalisierte Additive Modelle (GAMs) mithilfe der 

sogenannten Integrated Nested Laplace Approximation (INLA) für die Mauser- und Winterzeit 

aufgestellt.  

Die Ergebnisse dieser Doktorarbeit bestätigen die langfristige Konsistenz der Mauser- und 

Winterverbreitung von Trauerenten entlang der Schleswig-Holsteinischen Nordseeküste. Darüber 

hinaus zeigten sie eine vor kurzem aufgetretene, südwärts gerichtete Verschiebung mit einem 

erhöhten Aufkommen in diesen Arealen während beider Zeiträume auf. Eine Veränderung in der 

Beutezusammensetzung, vermutlich hervorgerufen durch die zunehmende Abundanz der 

Amerikanischen Schwertmuschel Ensis leei (M. Huber, 2015), wurde als mögliche Ursache identifiziert. 

Aufgrund eines höheren Fleisch-Schale Verhältnisses und außergewöhnlich hohen Abundanzen im 

Vergleich zu anderen Muschelarten, scheint diese energetisch profitabler zu sein. Der Vergleich eines 

zentralen Mauser- und Wintergebietes zeigte deutliche Unterschiede in der Struktur der benthischen 

Gemeinschaften. Die Profitabilität beider Regionen war jedoch annähernd gleich. Ein 
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Gegenüberstellen der Verteilungsmuster in zwei unterschiedlichen marinen Systemen - der deutschen 

Nord- und der dänischen Ostsee - offenbarte, dass Trauerenten trotz der unterschiedlichen 

Habitatcharakteristika die gleichen Verbreitungsmuster zeigten. Dies unterstützt die Hypothese, dass 

die Maximierung der Energieaufnahmerate bei gleichzeitiger Minimierung der Kosten für die 

Beschaffung von Ressourcen die Verbreitung beeinflusst. Eine Modellierung der Verteilungsmuster in 

Zusammenhang mit Umweltparametern verdeutlichte die Notwendigkeit, räumliche und zeitliche 

Skalen aufeinander abzustimmen. Während die Ergebnisse der Wintermodelle vielversprechend 

waren (knapp 25 % erklärter Abweichung des besten Modells), waren die Ergebnisse des 

Mausermodells weniger aussagekräftig (6.53 % erklärter Abweichung des besten Modells). 

Wassertiefe, Distanz zur Küste, Schubspannung und Feinsandanteil wurden als die Umweltparameter 

mit dem größten Einfluss identifiziert, da sie in allen Modellen einen signifikanten Effekt auf die 

Verbreitungsmuster hatten. Die selektierten Benthosvariablen hatten jedoch einen geringeren Einfluss 

als erwartet. Ursache hierfür war vermutlich die Diskrepanz in räumlichen und zeitlichen Skalen. 

Obwohl Schiffsverkehr in allen Modellen keinen signifikanten Effekt hatte, zeigten die Smoother 

Kurven, dass dieser Faktor starke negative Auswirkungen besonders während der Mauserzeit hatte. 

Insgesamt liefert die vorliegende Doktorarbeit neue und vertiefende Kenntnisse über die Verbreitung 

von Trauerenten in Bezug auf Habitatcharakteristika im Jahresverlauf. Kürzlich stattgefundene 

Verschiebungen der Verteilung, die wahrscheinlich durch eine Veränderung in der Abundanz einer 

einzelnen Muschelart hervorgerufen wurden, konnten identifiziert werden. Während eine vorherige 

Studie zeigen konnte, dass Umweltparameter für die Modellierung der Verbreitungsmuster von 

Trauerenten in der östlichen deutschen Bucht in einem kleinen Maßstab verlässlich genutzt werden 

können, wurde in der vorliegenden Doktorarbeit der erste Versuch unternommen, diesen Ansatz in 

einem weit größeren Maßstab anzuwenden. Dadurch konnten die Faktoren mit dem größten Einfluss 

identifiziert werden. Obwohl dieser Ansatz noch einige Verbesserungen erfordert, ermöglicht er die 

Vorhersage der Verbreitung von Trauerenten im Hinblick auf (a)biotische Faktoren inklusive wertvoller 

Informationen hinsichtlich der saisonalen Variabilität. Dieser Erkenntnisse werden nicht nur unser 

Verständnis von der Ökologie der Trauerente, die seit langem einem mangelnden Forschungsinteresse 

ausgesetzt ist, fördern. Sie haben ebenfalls eine Relevanz für zukünftige Management- und 

Schutzmaßnahmen.  



 

 
 

13 

 General Introduction 

GENERAL INTRODUCTION 

Habitat selection 

The distribution of a species is shaped by the need to maximise survival (Salewski & Bruderer 2007). 

As a consequence, habitat selection should reflect the choices of organisms made to fulfil their 

energetic requirements while simultaneously minimising predation risk in order to survive (Horne & 

Schneider 1994). The environment a species occurs in is affected by a variety of parameters either 

predefined by the habitat itself or by external factors such as anthropogenic activities. Besides habitat 

quality, conspecifics such as species interactions (within the same or between different species) can 

influence habitat selection as well, as these can affect population dynamics or regulations and 

community aggregations (Morris 2003). Prey condition however, is likely the most decisive habitat 

parameter controlling the distribution of a species (Davoren et al. 2003). It is characterised by prey 

accessibility, availability, density and abundance, prey species community structures and interactions, 

as well as seasonality (Harper 1982, Croy & Hughes 1991). Dispersal patterns can thus also be studied 

as responses to prey distributions and densities, depending on how they fulfil energetic demands 

during different periods (Davoren et al. 2002).  

When studying habitat selection, researchers are faced with the challenge to match different spatial 

and temporal scales (Jones 2001). Birds for example have different energetic demands during 

breeding, moulting or wintering seasons, thus influencing habitat selection. Seasonal effects (weather 

conditions, temperatures etc.) apply to the distribution of their prey as well. Johnson (1980) suggested 

four different levels of habitat selection ranging from a macro- (geographical range of a species, first-

order selection) to a micro scale (representing the accessibility of prey items or nest sites, fourth-order 

selection). Therefore, if we don’t want to miss any key influences, specifying the scale of interest when 

investigating species habitat selection is crucial (Orians & Wittenberger 1991).  

The Common Scoter Melanitta nigra  

Although not a breeding species in Germany, up to a quarter of the Western Palearctic Common Scoter 

flyway population occurs in the German North (and Baltic) Sea throughout the entire year, particularly 

during the moulting and wintering periods (Nehls 1998, Hennig & Eskildsen 2001, Sonntag et al. 2004, 

Markones & Garthe 2011, Spalke et al. 2013). The moulting season extends from the end of June, when 

failed breeders and males arrive in German waters, until late October with the arrival of females and 

juveniles. These individuals spend the subsequent winter in the same areas before starting their 

migration back to the breeding grounds in late February and March (Mendel et al. 2008). 
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Common Scoters are protected under a variety of agreements. They are listed in the EU Birds Directive 

Annex II (regulating hunting activities) and III (prohibiting activities directly threatening individuals) 

(Directive 2009/147/EC). In the convention on the Conservation of Migratory Species of Wild Animals 

(CMS) they are mentioned among the species in need of either developing or improving international 

agreements for their conservation (https://www.cms.int/en/species/melanitta-nigra). Furthermore, 

they are included in conservation agreements of the African-Eurasian Migratory Waterbirds 

convention (AEWA, https://www.unep-aewa.org/en/species/melanitta-nigra). The OSPAR 

commission lists Common Scoter among the waterbird species, which can be used as biodiversity 

indicators to assess the state of marine bird populations and the quality of their environment 

(https://www.ospar.org/documents?v=38978). While the IUCN Red List considers them generally as 

least concerned, they are listed as Red on the national list of the UK (BirdLife International 2019). 

Nevertheless, Kear (2005) stated that current protection measurements are insufficient and that this 

species suffers from lack of knowledge and research interest.  

Since the German North Sea represents such an important area for moulting and wintering Common 

Scoters and in respect of the before mentioned convention agreements, the German government has 

a particular international and domestic responsibility to safeguard these populations. This requires a 

comprehensive understanding of the population structure, breeding origins, feeding ecology and 

habitat selection. All this refers not only to factors inside the German North (and Baltic) Sea, but also 

to those outside (e.g. in breeding grounds or on migration routes). Those features will have effects on 

the status and demography of the local abundance of Common Scoter. Recently raised concerns about 

declines in sea duck populations residing in German Waters (and the entire Baltic Sea, Skov et al. 2011) 

highlight the importance of such adequate knowledge of their ecology to be able to develop and 

implement suitable conservation measures. Consequently, we need to survey the distribution of 

Common Scoters in relation to their environment. 

Common Scoters are benthic bivalve feeding sea ducks. They dive for prey organisms residing in the 

upper layers of preferably soft sediment (Madsen 1954, Fox 2004). The time and energy needed to 

dive for prey are decisively influenced by water depth. Since it is assumed that organisms aim at 

maximising their nutritional intake while simultaneously minimising the costs needed to gain energy 

resources (MacArthur & Pianka 1966), it is inferred that Common Scoter select for shallower waters. 

These would reduce the time needed to dive through the water column and obtain prey. This ratio of 

expenses and gained benefit should also influence their choice of prey organisms. Individuals in upper 

layers of soft sediment are easier to reach compared to individuals in lower layers or in harder, 

consolidated substrates. Moreover, the phenotype of potential bivalve prey is likely of importance, 

too. Individuals should neither be too big (as they probably could not be swallowed or might damage 
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the oesophagus) nor too small (as in this case scoters would need to dive more often to obtain 

sufficient energy). Besides individual size, shell thickness and flesh/shell ratios affect profitability. 

Individuals with thick shells are more difficult to crush in the gizzard and those containing less flesh 

relative to shell mass are less profitable than those of similar size with favourable flesh/shell ratios. 

The distribution of bivalve species is likewise under the influence of environmental parameters (Reiss 

& Kröncke 2005, Grey & Elliot 2009). Water depth, sediment characteristics, flow velocity and bed 

shear stress or chlorophyll a concentration in the water column are just a few examples. Hence, it is 

assumed that along with water depth, prey distribution, availability and profitability all affect Common 

Scoter dispersal. 

Another factor controlling the distribution of Common Scoters and their prey is seasonal variability. 

The moulting and wintering period represent different stages in the life cycle of Common Scoters and 

should therefore also have an influence on how they distribute. During moult, they replace worn flight 

feathers and are therefore flightless (Fox et al. 2008). They are expected to disperse in shallower 

waters, with most easily accessible prey, in areas with least disturbance and predation, as this would 

reduce diving time, maximise feeding time and avoid escape costs while enhancing survival probability. 

During the winter, they need to accumulate sufficient energy reserves by building fat depots in 

anticipation for spring migration. Thus, they are expected to disperse in areas with especially profitable 

prey, potentially in deeper waters, as moulting birds in the same areas might have previously depleted 

optimal food resources.  

Besides these natural parameters, other attributes such as anthropogenic activities can have an impact 

on the dispersal of a species. Particularly the German North Sea is subject to a large variety of human 

actions. It has long been an important region for fishery, gas and oil exploitation and is one of the 

world’s most used ship trafficking areas (Halpern et al. 2008). In recent years, expanding (coastal) 

recreational activities have added to anthropogenic utilisations of these waters. As the German North 

(and Baltic) Sea sustains such a large share of the Common Scoter Western Palearctic flyway 

population, it is crucial to understand features characterising these particular regions. This also 

involves the assessment of potential threats to acquire specific future management and protection 

strategies. 

Gaps in knowledge 

The distribution of Common Scoter in the German North and Baltic Sea has been studied by Seabirds 

at Sea surveys since the 1990s (e.g. Bräger et al. 1995, Sonntag et al. 2004/2006, Garthe et al. 2007, 

Markones & Garthe 2011). Based on these studies, we already have information on differences in 

distribution between moulting and wintering periods on a larger and on a smaller spatial scale within 
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German Waters (e.g. Garthe et al. 2003, Sonntag et al. 2004, Mendel et al. 2008). Berndt and Busche 

(1993) published more detailed information regarding seasonal variation in the distribution of 

Common Scoter in the German North and Baltic Sea. They described dispersal patterns during moulting 

and wintering seasons starting with migration movements across the Gulf of Finland and along the 

western coasts of Estonia and Lithuania. Based on aerial surveys, they compiled data on their 

occurrences and compared them to records sometimes dating back several decades. Due to these 

previous studies, the moulting and wintering distribution of Common Scoters (often including 

information about preferred water depths) is well characterised. However, we still lack detailed 

knowledge on movements on a small spatial scale, i.e. location changes between foraging and resting 

areas or the exchange of individuals between the German North and Baltic Sea (Mendel et al. 2008).  

A number of previous studies have investigated the feeding ecology of Common Scoters (e.g. Madsen 

1954, Meissner & Bräger 1990, Degraer et al. 1999, Fox 2004, Kaiser et al. 2006) concluding that their 

distribution is likely influenced by the distribution of their prey. Moreover, several studies have 

focused on specific bivalve prey items (i.e. Durinck et al. 1993, Wolf & Meininger 2004, Baptist & 

Leopold 2009). Food selection and foraging ecology in connection to seasonal variability have however 

largely been neglected until now (Mendel et al. 2008).  

Species distribution models have proven to be a useful and increasingly important tool for 

conservation and climate change management to predict the distribution of a species based on 

environmental descriptors (Austin 2007). However, relating the distribution of a species to 

environmental parameters is a complex procedure as a multitude of parameters needs to be sampled 

on a similar spatial and temporal scale in connection to the seasonally varying dispersal of the studied 

species (Austin 2002/2005, Lambert et al. 2017). So far, only very few studies have attempted to 

establish this connection in case of the Common Scoter (Deppe 2003, Schwemmer et al. 2019). Thus, 

we still lack knowledge on the habitat selection of this species on larger spatial scales and in relation 

to seasonal variability.  

Objectives and Methods 

This thesis aims to analyse the distribution and habitat selection of the Common Scoter in the German 

North Sea, particularly the areas along the coast of Schleswig-Holstein, to answer the following 

questions:  

 Are there spatial and temporal differences in distribution patterns between the moulting and 

wintering season?  

 Can we identify between and within year variations in moulting and wintering dispersal 

patterns? 



 

 
 

17 

 General Introduction 

 What influence do environmental parameters such as sediment, benthic communities, water 

depth and water current or anthropogenic activities (e.g. ship traffic) have on the distribution 

of Common Scoters in the German Bight?  

 Do moulting and wintering areas display distinct differences regarding these habitat 

parameters? 

To analyse distribution patterns in the German North Sea, Seabirds at Sea data were used compiled 

from surveys undertaken since the early 1990s as well as during the PhD. Benthos and sediment 

samples were collected in the moulting and wintering area at different times of the year to relate prey 

availability to seasonal variations. Bivalve specimens found in these samples were analysed in terms 

of biomass (expressed by ash-free-dry mass) and profitability (expressed by flesh-to-shell ratio) to 

investigate profitability of available prey resources. Additionally, different environmental parameters 

were either sampled during the PhD (water depth, sediment characteristics) or taken from previous 

studies and the literature to model the distribution of Common Scoters in relation to habitat 

characteristics.  

Chapter outline  

The thesis takes the form of five different chapters, each of which answers the before mentioned 

specific questions. 

In Chapter 1, long term changes in distribution patterns of moulting and wintering Common Scoters 

in the German North Sea are described. This chapter gives a general overview of the dispersal during 

both periods and of scoter hotspots, but also investigates within and between year variations. 

Furthermore, shifts in distributions during recent years were identified.  

In Chapter 2, bivalve communities are compared between moulting and wintering areas used by 

Common Scoters. Sediment and benthos samples were taken in two core areas known for their 

consistent use by either moulting or wintering scoters. The composition of benthic bivalve 

communities was determined and compared between areas. Additionally, abundances, biomass and 

flesh-to-shell ratio of found bivalve species were determined to investigate the profitability of prey 

resources.  

Chapter 3 focuses on the role of the American Razor Clam Ensis leei as a potential novel food source 

for moulting and wintering scoters. This invasive alien bivalve was introduced to the German North 

Sea in the late 1970s and has since then spread across the Wadden Sea. This chapter investigates the 

extent of its dispersal and its high abundance particularly in the core moulting area of Common Scoters.  
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In Chapter 4, large-scale depth-related seasonal dispersal patterns of Common Scoters in two 

contrasting marine systems are described. The distribution of scoters based on Seabirds at Sea data 

compiled during the moulting and wintering season in the German North Sea and the Danish Aalborg 

Bugt are analysed in connection to water depth. This chapter shows that despite environmental 

differences in both habitats scoters show the same dispersal patterns.  

In Chapter 5, the distribution patterns of Common Scoters in the German North Sea are modelled by 

environmental parameters. The analysis includes parameters such as water depth, bed shear stress, 

proportion of fine sand, benthic bivalve prey species and ship traffic as an example of anthropogenic 

disturbances. This chapter characterises factors having an influence on how scoters disperse during 

moult and winter.  
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CHAPTER I 

Changes in moulting and wintering distribution patterns of Common 

Scoter Melanitta nigra in the south-eastern North Sea 2006 - 2017 

Johanna Kottsieper, Nele Markones, Anthony D. Fox, Stefan Garthe  
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Abstract 

The Common Scoter Melanitta nigra (Linnaeus, 1758) is an arctic/sub-arctic sea duck species, which 

occurs in high numbers in the German North (and Baltic) Sea during moulting and wintering seasons. 

Seabirds at Sea surveys conducted since the early 1990s revealed that Common Scoter consistently 

used the waters along the Schleswig-Holstein North Sea coast during both periods. We analysed these 

data to investigate Common Scoter distribution patterns during 2006-2017 and determine seasonal 

and between year variations. Our results confirmed the consistent dispersal of Common Scoter in the 

German North Sea. During moult, birds aggregated close to the coast and in shallow waters. As the 

winter progressed, Common Scoter spread across wider areas and further offshore into deeper waters. 

Despite this consistency, our study revealed a southward shift in Scoter distributions during both 

seasons, as more birds utilised areas west of the North Frisian Islands and even higher numbers west 

of the Eiderstedt peninsula. Furthermore, we identified an overall increase in the number of moulting 

and wintering birds during the last five years (2013-2017). Our study highlights the increasing 

importance of the waters along the Schleswig-Holstein North Sea coast as a vital habitat for moulting 

and wintering Common Scoter in this flyway population.   
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Introduction 

The German North Sea offers important habitats for moulting and wintering sea ducks, including the 

Common Scoter Melanitta nigra (Linneaus, 1758). This species migrates from arctic/sub-arctic 

breeding areas that extend from Iceland, UK and Scandinavia to the core breeding areas across 

northern Russia (BirdLife International 2015) to moult in the German North (and Baltic) Sea and 

subsequently spend the wintering season in the same general areas (Glutz von Blotzheim and Bauer 

1990). During those periods, up to a quarter of the Western Palearctic Common Scoter flyway 

population resides in German Waters (Mendel et al. 2008). Early moulting individuals (males, subadults 

and failed breeders) arrive in the North (and Baltic) Sea from late June onwards (Mendel et al. 2008). 

The moulting period extends until October, as females, which have successfully bred, as well as 

juveniles migrate to the German Bight before late summer/early autumn. Starting in February, 

Common Scoter progressively return towards their breeding grounds leaving some individuals, which 

stay in these areas throughout the entire year (Mendel et al. 2008).  

While in German waters, Common Scoter are exposed to threats caused by anthropogenic activities. 

The North Sea has long been an important area for fishery, gas and oil exploitation, as well as being 

one of the most intensive ship trafficing areas worldwide (Halpern et al. 2008). Intensifying 

recreational use and offshore wind farm development also pose new threats to waterbird species such 

as Common Scoter. Since this species is protected under the EU Birds Directive, it is necessary to 

understand its distribution patterns to assess the risks of potential threats and provide information to 

support the development of management strategies for an effective protection.  

To describe seabird distribution patterns during their annual cycle along German North Sea coasts, 

standardised ship-based surveys have been carried out since the early 1990s supplemented by surveys 

from aircraft since 2002 (Garthe et al. 2002). These surveys show considerable annual variation in 

numbers of observed birds, but Common Scoter consistently use the same areas during moult and 

winter (Markones and Garthe 2011). Earlier studies showed that Common Scoter were highly sensitive 

to disturbance from ship traffic (Kaiser et al. 2006), showing longest flushing distances among all 

investigated seabird species (Schwemmer et al. 2011, Fliessbach et al. 2019). In UK waters, a single oil 

spill temporarily reduced the local population of Common Scoter by almost two-thirds (Banks et al. 

2008). These are just two examples of impacts of human activities on Common Scoter distribution and 

abundance. By avoiding disturbance, birds invest time and energy in escape behaviour, suffer elevated 

stress levels, are displaced from favoured feeding areas and lose foraging time, all factors likely to 

affect body condition. Disturbance can therefore potentially affect local abundance, and habitat use 

of Common Scoter in the wintering and moulting areas as well as their reproductive success as a 

possible carry-over effect.  
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To assess the impact and risk of disturbance for species and designate, for example, marine protected 

areas, it is important to determine their distribution patterns during the annual cycle. Since birds have 

different needs at different times of the year, we expect them to distribute themselves according to 

these needs. When Common Scoter arrive in the German North Sea to replace their flight feathers 

during moult, we would expect them to localise in areas with lowest disturbance levels and rich, easily 

accessible prey resources. Increasing numbers of individuals arriving in the same areas during the 

moulting season might force them to disperse more widely as prey resources might potentially be 

depleted. Therefore, we might expect them to move to other areas in the German North Sea during 

the winter.  

To obtain a better understanding of how Common Scoter distribute themselves during moult and 

winter, we used Seabirds at Sea surveys from the early 2000s onwards conducted in the German North 

Sea. We analysed these data to (i) characterise the general distribution pattern of Common Scoter 

along the Schleswig-Holstein North Sea coast, (ii) identify differences in distribution patterns between 

moulting and wintering periods, and (iii) investigate within and between year variances in abundance 

and distribution patterns. Additionally, we identified core distribution areas to (iv) analyse potential 

fluctuations in the dispersal of moulting and wintering birds along the Schleswig-Holstein North Sea 

coast in more detail.   
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Material and Methods 

2.1 Study area  

The study area consisted of an area of 2965 km2 of the German North Sea along the Schleswig-Holstein 

coast within the 12 nautical mile zone extending from above the Elbe river in the south (54°2’N, 8°38’E) 

to the border of the German EEZ near Sylt in the north (55°4’N, 8°24’E, see Fig. 1). The area is located 

in the sublitoral zone of the Wadden Sea and included areas further offshore with water depths of up 

to 35 metres. The entire survey area is located in a protected area designated by both the Habitats 

Directive and Birds Directive and is listed as a Ramsar site (Krause et al. 2011).  

 

Fig. 1 Study area with aerial transect survey lines and subareas. The number of each subarea as well 

as their extent are indicated on the map.   
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2.2 Aerial Seabirds at Sea surveys 

Monitoring of waterbirds in the study area has been undertaken at least twice annually (during 

summer and winter) during 2006-2017 on behalf of the Schleswig-Holstein Agency for Coastal Defence, 

National Park and Marine Conservation - National Park Authority. During each survey, 7 nearly N-S 

parallel strip transects were flown (Fig. 1) with a twin-engine Partenavia P68 aircraft flying at 78 meters 

and at a speed of 90-100 knots. The four innermost transects closest to the coast were spaced at 3 km 

intervals, the remaining three were spaced at a 6 km interval. In each strip transect, all birds visible 

between 45 m (since seated observers cannot detect birds in the area directly beneath the aircraft out 

to 45 m) and 397 m out from the aircraft were counted and assigned to species. Although we recognise 

declining detectability over this distance, here we consider this as a constant error, acknowledging 

potential variation in observer skills or sea and light conditions as confounding factors could not be 

excluded completely. Experienced observers counted all species and stated their numbers (flock sizes 

or individuals) and behaviour (swimming, diving, flying, flushing, sitting on an object/sandbank and 

migrating) directly onto a Dictaphone with a time stamp. The predetermined flight track was logged 

with a GPS at five-second intervals. After interpolating positional information to one-second intervals, 

each observation could be located accurate to c.50 metres. Surveys were not carried out under 

unfavourable weather conditions (excessive sun glare, wind speed >5.5 m s-1, wave height >1.25 m). 

For further details of the method see Markones and Garthe (2011).  

2.3 Data analysis  

All maps were produced using ArcGIS (ESRI, Version 10.2.1, 2013). To investigate distributional 

differences between the moulting (June-September) and the wintering season (December-February) 

in the annual cycle of the Common Scoter, and to investigate whether these changed over time, we 

only considered survey data from those periods. Therefore, 14 moult and 10 winter surveys were 

included in the analysis (see Table 1). The main objective of this study was the description of overall 

distribution patterns including the identification of potential hotspots. We used distance corrected 

count data assuming an equal detection rate across the transects (although we acknowledge that we 

cannot entirely exclude that birds might have been missed) to visually map observations and capture 

the overall number of birds assigned to each subarea.  

To analyse the long-term distribution patterns in the German North Sea, surveys from moulting and 

wintering seasons were summarised to three periods each (2006-2010, 2012-2014 and 2015-2017). 

For logistical reasons, survey coverage differed between years in their timing and area coverage of the 

moulting and wintering seasons. Consequently, we selected these blocks of years to achieve even 

survey coverage during the moulting and wintering season. A 1 x 1 km grid square was imposed across 
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the study area and Common Scoter numbers within each of these grid squares were calculated by 

spatially combining the point observations from each of the surveys for each period within ArcGIS. The 

observed number of birds was summarised for each grid cell and expressed as individuals/km-2 

(ind./km-2.) 

To analyse potential variations in distribution between years, the area along the Schleswig-Holstein 

North Sea coast was separated into three subareas of similar sizes (see Fig. 1). These subareas were 

based on the core distribution areas of Common Scoter during their moulting and wintering period.   

Since the survey effort was not equal in all subareas for all flights, we excluded surveys covering less 

than 80 % of the maximum survey length. Thus, only 8 flights from the moulting and 7 flights from the 

wintering season could be considered for a more detailed analysis. We especially wished to look for 

within- and between-year changes in Common Scoter distributions between the three subareas, but 

insufficient data from earlier years constrained the analysis to 2012-2017, with at least one survey per 

season in each year. To assign the scoter observations to each subarea, the abundance data from the 

1 x 1 km grid squares were spatially joined with the subareas in ArcGIS. The number of birds observed 

in each subarea was then calculated for every survey by summing all birds counted. Additionally, the 

proportion of individuals of the overall abundance (in all subareas combined) was calculated for each 

subarea.  

 

Results  

3.1 Distribution patterns 

Moulting distribution 

During moult, Common Scoter were distributed close to the coast (Fig. 2a-c). The lowest numbers were 

observed in the first period (2006-2010) when very few moulting scoter were present at all, mostly 

west of the Eiderstedt peninsula and west of Süderoogsand (Fig. 2a and Table 1). Numbers were higher 

in the second period (2012-2014, Fig. 2b), when most Common Scoter were located close to the 

Eiderstedt peninsula and with several flocks spread towards the centre of the study area along the 

North Frisian Islands. Only a few individuals could be found off Sylt (Fig. 2b). In the latest period (2015-

2017), Scoter numbers increased with birds spreading across larger areas and offshore throughout the 

12 nm zone, with highest numbers along the North Frisian Islands and west of the Eiderstedt peninsula, 

but likewise with increasing numbers off Sylt (Fig. 2c).  
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Wintering distribution 

During winter, greater numbers of Common Scoter were present through all three periods compared 

to during moult (Fig. 3 and Table 1). Birds were more widely distributed throughout the entire 

Schleswig-Holstein North Sea coast, with many flocks out to the 12 nm border (Fig. 3a-c). During the 

first period (2006-2010), the majority of flocks was concentrated in the north (close to Sylt) and centre 

(along the North Frisian Islands, Fig. 3a). During 2012-2014, the majority of Common Scoter occurred 

in the northern part along the coast off and west of Sylt, as well as in the central subarea close to 

Amrum and increasing numbers off the Eiderstedt peninsula further south (Fig. 3b). During 2015-2017, 

greater concentrations occurred in the south close to the Eiderstedt peninsula, relatively fewer birds 

occurred along the coast of Sylt, but high concentrations could still be found along the North Frisian 

Islands and further offshore (Fig. 3c).  

3.2. Contrasting use of subareas 

During the moulting period, the majority of Common Scoter were observed in subareas 2 (centre) and 

3 (south), with least observed birds in subarea 1 (north) across all years (Fig. 4a and Table 2). Subarea 

1 had a peak in number of birds observed in 2015 (972 ind./km-2) and showed higher numbers in 2016 

(1,419 ind./km-2), whereas bird numbers varied between 0 and 167.7 ind./km-2 in all other years. In 

subarea 2, numbers peaked at 6,159.6 ind./km-2 in 2015 not exceeding 2,610 ind./km-2   in other years. 

In subarea 3, Scoter numbers peaked at 15,183 ind./km-2 in September 2015, but with relatively 

modest numbers in all other years.  

Comparing the proportions of the overall occurrence in each subarea confirms that the majority of 

birds was observed in subareas 2 (centre) and 3 (south) (Fig. 5a). While only supporting very low 

numbers during earlier years (2012-2015) and in 2017, more birds were found in subarea 1 in 2016 (ca. 

24%). Subarea 2 supported around 87% of the overall occurrence in 2012, but numbers decreased to 

only 10.56% in 2015. Subarea 3 revealed an increase in number of Common Scoter since 2014. In 2015, 

around 84% of all observed birds were located here. However, numbers were decreasing to 50% in 

2016 and only ca. 42% in 2017. 

In all winters, Common Scoter were observed in higher numbers across all subareas (Fig. 4b). Subarea 

had several peaks with 15,265.8 ind./km-2 in 2009, 13,878 ind./km-2 in 2014 and 22,360 ind./km-2 in 

2017, but numbers were comparatively low in all other years. In subarea 2, numbers of birds increased 

from 414 ind./km-2 in 2012 to a peak of 60,415 ind./km-2 in 2017. In subarea 3, numbers peaked in 

2016 at 172,043 ind./km-2, varying between 2,088 ind./km-2 (2012) and 29,106 ind./km-2 (2015) in other 

years. In 2017, numbers decreased to 17,329 ind./km-2.  
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Comparing the proportions of the overall occurrence in each subarea confirmed these observations 

(Fig 5b). While subarea 1 supported 52.23% of all birds encountered in 2012, numbers decreased to < 

1% in 2016, but increased to 22.34% in 2017 again. In subarea 2, 7.90% of the overall occurrence could 

be observed in 2012, increasing to 60.35% in 2017. Between 2013 and 2015, numbers varied between 

55.36% (2013) and 6.51% (2016). In subarea 3, proportions varied between ca.40% (2012) and 17.31% 

(2017), peaking with 93.31% in 2016. 

Table 1 Summary of the number of Common Scoter observed and the distance travelled (km) on 

transect per season and year counted during the monitoring flights in the study area.  

 
Survey 

date Birds observed Distance [km) 

M
O

U
LT

 

23.07.2008 207 504.02 
21.06.2010 972 345.26 
19.06.2012 3186 365.41 
25.07.2012 819 395.2 
19.08.2012 300.6 393.12 
17.06.2013 8201 380.24 
16.07.2013 5673 433.97 
27.06.2014 4023 429.12 
12.06.2015 15519.6 504.55 
28.09.2015 18081 457.2 
07.09.2016 5934 1157.75 
18.06.2017 101630.5 954.19 
06.07.2017 1130.9 991.24 

W
IN

TE
R 

22.01.2006 16513.2 366.3 
28.02.2006 13091.4 274.29 
14.02.2009 25520.4 493.12 
07.02.2010 8233.2 436.11 
04.02.2012 5238 502.49 
02.12.2013 18144 405.28 
11.02.2014 17586 483.2 
12.02.2015 40698 521.73 
28.02.2016 184384 1174.77 
17.01.2017 100104 1261.61 
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Fig 2 Distribution patterns of moulting Common Scoter during moult in the years (a) 2006-2010, (b) 2012-2014 and (c) 2015-2017. The map for the first period 

(2006-2010) is based on two surveys only.  
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Fig. 3 Distribution patterns of wintering Common Scoter during the years (a) 2006-2010, (b) 2012-2014 and (c) 2015-2017.  
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Fig. 4 Graphs showing the overall occurrence of Common Scoter in each subarea during 2010-2017 for (a) the moulting and (b) the wintering period. 

   

Fig. 5 Graphs showing the percentage of the overall occurrence of Common Scoter in each subarea for (a) the moulting and (b) the wintering period during the 
years 2010-2017.  
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Table 2 Summary of the number of observed Common Scoter counted, the proportion of the overall occurrences (%) and the distance travelled (km) during each 

survey year and each period for each subarea.  

  Subarea 1 Subarea 2 Subarea 3 

 
Survey 

date 
Birds 

observed 
Proportion 

[%] 
Distance 

[km] Birds observed Proportion 
[%] 

Distance 
[km] 

Birds 
observed 

Proportion 
[%] 

Distance 
[km] 

M
O

U
LT

 

23.07.2008 37.8 18.26 176.63 97.2 49.96 164.78 72 34.78 165.61 
19.06.2012 36 1.13 177.86 2610 81.92 121.75 840 16.95 125.80 
25.07.2012 27 3.30 134.16 711 86.81 130.26 81 9.89 130.78 
27.06.2014 0 0 136.02 1260 31.32 147.86 2763 68.68 145.24 
12.06.2015 0 0 152.64 6159.6 36.69 174.42 9360 60.31 177.49 
28.09.2015 972 5.38 143.64 1926 10.65 153.77 15183 83.97 159.79 
07.09.2016 1419 23.91 382.65 1548 26.09 385.38 2967 50.00 389.72 
06.07.2017 167.7 14.83 323.71 490.20 43.35 328.93 473 41.83 338.60 

W
IN

TE
R 

14.02.2009 15265.8 59.82 174.24 7930.8 31.08 164.92 2323.8 9.11 153.96 
04.02.2012 2736 52.23 159.56 414 7.90 171.03 2088 39.86 171.9 
02.12.2013 3132 17.26 125.16 10044 55.36 136.60 4968 27.38 143.52 
11.02.2014 13878 78.92 149.74 1854 10.54 171.51 1854 10.54 161.95 
12.02.2015 675 1.66 165.95 10917 26.82 177.95 29106 71.52 177.83 
28.02.2016 344 0.19 419.36 11997 6.51 388.00 172043 93.31 367.41 
17.01.2017 22360 22.34 404.72 60415 60.35 432.24 17329 17.31 424.65 
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Discussion 

Our study confirmed that Common Scoter consistently use the waters along the Schleswig-Holstein 

North Sea coast during their moulting and wintering period. During moult, Common Scoter generally 

aggregated close to the coast in water depths of < 10m and during winter they occurred further 

offshore in deeper waters. While large numbers of individuals were observed at water depths of < 10 

m during the winter as well, several individuals were also found in areas varying between 10 and 20 m 

water depth. Our results showed a general increase over time in the overall number of birds present 

(most dramatically in moulting numbers, but with strikingly high numbers in the winters of 2016 and 

2017) as well as a southbound shift in their distribution patterns during both seasons. Numbers of 

Common Scoter increasingly concentrated in the central (subarea 2) and southern parts (subarea 3) of 

the study area close to the Eiderstedt peninsula during the moulting and the wintering period. We 

hypothesise that this shift is likely the result of an increase in the abundance of prey species, 

particularly the American Razor Clam Ensis leei (M. Huber, 2015). This invasive bivalve occurs in high 

densities west of the North Frisian Islands (Schwemmer et al. 2019.), but has been shown to be present 

in even higher densities west of the Eiderstedt peninsula (Kottsieper et al. 2019). Schwemmer et al. 

(2019) modelled the distribution of Common Scoters in relation to the distribution of E. leei in the 

central eastern German North Sea and found that the abundance of this alien bivalve explained scoter 

dispersal to a high degree. By analysing stomach prey compositions of dead Common Scoter, they 

could show that 35 % of these contained E. leei fragments. Dannheim and Rumohr (2012) described 

the successful settlement and reproduction of this bivalve species along the coast of Schleswig-

Holstein with high abundances west of Sylt and the Eiderstedt peninsula. These studies highlight that 

the American Razor Clam likely is an important (and reliable) prey item for Common Scoters.  

During the moulting season, when individuals simultaneously replace flight feathers and are therefore 

flightless, Common Scoter aggregated close to the coast in shallow waters. During the winter, they 

spread across larger areas and moved to deeper waters further offshore. Fox et al. (under review) 

recently confirmed this pattern for Common Scoter in the German North and the Danish Baltic Sea. 

When moulting, Common Scoter distribute in shallow waters with easily accessible rich prey resources 

first and thereby minimise their foraging costs while maximising their nutritional and energetic intake 

rates. With more individuals arriving as the winter progresses they move to deeper waters, distributing 

themselves across wider areas and further offshore.  

Despite the overall increase in moulting and wintering birds, our data showed some fluctuations with 

between year numbers sometimes drastically decreasing or increasing. This might be accounted for by 

the difficulty to record Common Scoters as they occur far offshore and have long flush distances (e.g 
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Berndt and Busche 1993, Hennig and Eskildsen 2001, Schwemmer et al. 2011, Fliessbach et al. 2019). 

Moreover, it is assumed that individuals move within as well as between German, Dutch and Danish 

North and Baltic Sea areas (Berndt and Busche 1993, Hennig and Eskildsen 2001, Sonntag et al. 2004). 

Thus, individuals change locations on a broad spatial scale and might therefore cause some of the 

described fluctuations in observed numbers. In recent years, more Common Scoter were observed 

beyond the 12 nm border with water depths ranging between 20 to 30 m. Since these areas are not 

covered by the current transect design, individuals further offshore were probably missed during the 

counts analysed in this study.  

The consistent long-term use of the waters between the Schleswig-Holstein North Sea coast and the 

12 nm zone highlights the importance of this area for Common Scoter. A recent study could show that 

the numbers of Common Scoter are increasing in the German Baltic Sea as well (Markones et al. in 

preparation). These results suggest that German waters are progressively becoming increasingly 

important habitats for moulting and wintering Common Scoter. The study area in the German North 

Sea falls within special protected areas designated by the EU Habitats Directive, the EU Birds Directive 

and the Ramsar Convention. Our study reinforces the importance of these areas along the Schleswig-

Holstein North Sea coast as protected areas for the Common Scoter (and other seabird species).  

So far, only a few studies have attempted to analyse factors influencing habitat selection of Common 

Scoter in the German North Sea (e.g. Deppe 2003, Kaiser et al. 2006, Schwemmer et al. 2019). 

Schwemmer et al. (2019) were not only able to show that Common Scoter distribution is influenced by 

the distribution of E. leei. They could also show that it is possible to model the distribution of an avian 

species in relation to a selection of environmental parameters (including for example water depth and 

bed shear stress). Thereby, they characterised a statistical tool, which can be used to predict bird’s 

dispersal with regard to their chosen habitat. If this approach can be applied to a larger spatial scale, 

it could be a useful future tool to identify the most influential habitat characteristics for Common 

Scoter. Despite these previous studies, the reason why Common Scoters consistently uses particularly 

the areas along the Schleswig-Holstein North Sea coast during the moulting and wintering season still 

remains poorly understood. Understanding the influence of e.g. environmental parameters, which can 

impact scoter distribution, is not only necessary to increase our understanding about how they 

distribute themselves. It is also important to enhance and specify future protection strategies. 

Therefore, more detailed knowledge on the impact of environmental parameters such as prey 

accessibility and availability in relation to seasonal variation, water depth and disturbance is needed.  
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Abstract 

The Common Scoter (Melanitta nigra) is a common sea duck, which predominantly feeds on sedentary 

benthic bivalve prey and occurs in large late-summer moulting concentrations in the German North 

Sea in areas which differ from those used by later wintering concentrations. Assuming scoters 

distribute in response to prey accessibility, abundance and profitability, we hypothesis that their 

contrasting distribution during moult compared to winter potentially reflects differences in prey type 

and distribution. We compared benthic bivalve community composition, abundance, ash-free dry mass 

and flesh-to-shell ratios between both areas to investigate factors influencing the seasonal difference 

in areas used by scoters. The American Razor Clam (Ensis leei) was the most common bivalve in the 

moulting area (mean abundance 1004 ± 1681 ind. m-2, mean ± SD) with the highest flesh-to-shell ratio 

(0.341 g m-2 ± 0.729 g m-2), whereas the American Piddock (Petricolaria pholadiformis) showed the 

highest ash-free dry mass (0.635 g m-2 ± 0.392 g m-2). In the wintering area, the most common bivalve 

was the Bean-like Tellin (Fabulina fabula, 13 ± 17 ind. m-2), Spisula solida had the highest ash-free dry 

mass (1.639 g m-2 ± 1.262 g m-2) and F. fabula and Abra alba had the highest flesh-to-shell ratios. Overall 

benthic species community composition differed considerably between moulting and wintering area, 

with fewer species and lower abundance in the wintering area. The high abundance and food quality 

(flesh-to-shell ratios) of E. leei (an invasive alien to the German North Sea since the 1980s) in the 

moulting area suggests its relative importance and potentially explains the seasonal differences of 

Common Scoter distributions.  
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Introduction 

Seabirds at Sea surveys conducted since the 1990s have shown that German North Sea coasts are 

important late summer habitats for moulting Common Scoters Melanitta nigra (Linneaus, 1758) 

replacing flight feathers and subsequently for larger wintering aggregations (e.g. Nehls, 1998, Hennig 

and Hälterlein, 2000, Markones and Garthe, 2011). Up to a quarter of the Western Palearctic flyway 

population can be found in the German North (and Baltic) Sea (Mendel et al., 2008) from late July until 

mid-October (Mendel et al., 2008) aggregating in shallow waters (Deppe, 2003). Higher numbers occur 

in winter (December - late February) when Scoters move into deeper waters further offshore 

(Markones and Garthe, 2011, Mendel et al., 2008). Common Scoters consistently utilised different 

moulting areas in the German North Sea compared to their wintering distributions (FTZ unpublished 

data). These distributions are thought to be a response to the distribution of their prey (e.g. Madsen, 

1954, Meissner and Bräger, 1990, Degraer et al., 1999 and Kaiser et al., 2006), although their 

aggregative responses to food supplies throughout the annual cycle have yet to be demonstrated 

(Nehls, 1998, Hennig and Hälterlein, 2000, Deppe, 2003).  

Birds tend to distribute themselves to maximise nutritional and energetic intake rates while 

simultaneously minimising their feeding costs and predation risk (e.g. MacArthur and Pianka, 1966). 

The profitability of feeding areas could therefore be defined as the energy gained from prey species 

minus the costs spend foraging. Thus, we infer that Common Scoters select areas where prey 

organisms are most abundant, most profitable and accessible with least energy expenditure. Scoters 

dive to feed on abundant sedentary bivalve molluscs, accessible in upper marine sediment layers, 

preferentially selecting species such as Abra alba, Cerastoderma edule, Limecola balthica or Spisula 

subtruncata (for taxonomical authorities see Table 1) of size classes 5-20 mm, and up to 40 mm 

(Madsen, 1954, Fox, 2004). Additionally, Common Scoters prefer to feed in water depths of 2-7 metres 

(but also down to 20 metres, Madsen, 1954, Cramp and Simmons, 1977) confirmed by modelled 

distribution patterns  in relation to water depth (Schwemmer et al. 2019a, this issue).  

One explanation for Common Scoters using different moulting and wintering areas in the German 

North Sea could relate to differences in benthic communities with regard to prey species accessibility, 

composition, spatial distribution, densities and profitability (since Common Scoters prefer feeding in 

shallow waters and sandy substrates, Fox, 2004). Furthermore, Common Scoters likely deplete prey 

resources in the moulting areas, potentially making deeper water areas with less favoured substrates 

and prey relatively more profitable as the winter progresses.  

In this study, we compare bivalve benthic communities sampled from two separate areas known 

consistently for their use by Common Scoters during moult and winter, looking for differences in 

benthic prey species in terms of species composition and abundance. To determine the profitability of 
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bivalve species, we calculated ash-free dry mass as a measure of organic matter and flesh-to-shell-

ratio in both areas for all bivalve species. Since environmental parameters influence distribution and 

species composition of benthic communities (e.g. Kunitzer et al., 1992, Ellingsen, 2002), we 

incorporated selected environmental parameters into our analyses. Finally, based on these 

differences, we looked for explanations for the differences in scoter use of the two areas at different 

stages of the annual cycle to gain greater insight into how food supply may influence scoter distribution 

patterns. 

Based on the differences in Common Scoter moulting and wintering distributions, we raised the 

following hypotheses:  

1. Benthic bivalve species community compositions differ between moulting and wintering areas. 

2. We predict higher abundances of more profitable prey items among benthic bivalves in the 

moulting compared to the wintering region.  

3. Biomass (ash-free-dry mass) and profitability (flesh-to-shell ratio) of benthic bivalve species 

are more profitable in moulting versus wintering areas.  

4. The spatial distribution of benthic bivalve species varies with several environmental 

parameters (e.g. sediment characteristics, water depth, bed shear stress).  

5. Common scoter distribution matches the distribution of their preferred prey items (which in 

turn are linked to environmental parameters).   
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Material and Methods 

2.1 Study area 

The two defined study areas were previously identified as core moulting and wintering areas for 

Common Scoter in the coastal sublittoral German North Sea within the twelve nautical mile zone 

(Markones and Garthe, 2011, see Fig. 1). The moulting area covered 860 km2 in the southern German 

North Sea, extending from Westerheversand (54°23’N, 8°33’E) on the Eiderstedt peninsula to 

Friedrichskoog (54°2’N, 8°34’E) in the south, extending 23 km off the coast and ranging from 1 to 16 

m water depth (Fig. 1). The wintering area was located west of the island of Sylt, covered an area of 

490 km2 with water depths ranging from 5 to 17 m and extending from Lister Deep to Hörnum Deep 

20 km off the coast (Fig. 1). 

 

Fig. 1. Location of benthos sampling survey areas in the German North Sea, showing sampling stations 

and dates in the Common Scoter northern wintering area and the more southerly moulting area. 

Samples collected during May/July 2016 and April 2017 represent the pre-moult season, samples 

collected during November 2015 and October 2016 represent the post-moult season. The wintering 

season is represented by samples of February 2018.   
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2.2 Benthos and sediment sampling 

In total, 263 benthos and 107 sediment samples were collected with a 0.1 m2 Van Veen grab during 

five cruises performed between 2015 and 2017 in the moulting area and 56 benthos and 30 sediment 

samples during one cruise in the wintering area (2018).  

In the moulting region, three cruises were conducted before (May and July 2016, April 2017) and two 

after the moulting season (November 2015, October 2016). In October 2016, samples were taken 

based on a 5x5 km grid to ensure consistent coverage of both areas (Gray and Elliott, 2009). Samples 

in May and July 2016 were taken in collaboration with the Kiel University Geology Department 

investigating gradients in sediment distribution based on a random stratified design. In November 

2015 and April 2017, bad weather restricted sampling to two tidal inlets close to Büsum harbour (Fig. 

1). The wintering area was sampled in February 2018 based on a 5x5 km grid (Fig. 1). 

We took three replicates at each sampling station, each sieved through a 2 mm mesh and retrieved 

bivalves were stored in zip lock bags and frozen at -20°C for subsequent analysis. To describe the full 

benthic community, additional replicates taken in October 2016 were sieved through a 1 mm mesh, 

the full results of which are reported in Margeritis et al. (this issue). This study focuses on bivalve 

species, since they are the main prey items of Common Scoters. Sediment samples were taken from 

the first replicate, stored in zip lock bags and frozen at -20°C for further analysis. 

2.3 Bivalve species analysis 

All bivalve specimens were identified to species (see Table 1), counted and measured by callipers to 

the nearest 0.1 mm (length, width and height). Individual ash free dry weight (ash-free dry mass, given 

in g m-2) was determined based on the loss on ignition method (Kramer et al., 1992). Flesh-to-shell 

ratio was calculated based on dry weights. Flesh was removed from complete shells, with flesh and 

shells dried separately in porcelain crucibles at 50°C for 24 hours and weighed. To determine ash 

content, flesh fractions were combusted in a muffle furnace at 560°C for 12 hours and subsequently 

reweighed. Cumulative individual ash free dry weights were used to calculate species ash-free dry mass 

per sample. Individuals where separation of flesh and shell was impossible (e.g. if shells were broken 

or individuals were too small) were excluded from further analysis. Due to of variable abundances, 

only bivalve species with a minimum of 26 (moulting area) and 7 (wintering area) sampled specimen 

were considered for further analyses. Species abundances, ash-free dry mass and flesh-to-shell ratio 

of all species collected are given as mean ± SD shown in Appendix Table A.1.  

Some moulting area samples contained large numbers of two bivalve species, E. leei and L. balthica 

(for taxonomical authorities see Table 1), so only subsamples were subject to the loss on ignition 

method. Remaining individuals were either measured with a calliper (L. balthica) or separated into 5 
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mm size classes (from >0 to 110 mm) by placing them on graph paper (E. leei). Based on the ash free 

dry weight (y)/shell length (x) relationship of processed specimens, the following linear regressions 

models were fitted to determine the ash-free dry mass of the measured individuals: y = 3E-07x3.2144 (R2 

= 0.93 for E. leei) and y = 2E-07x4.2294 (R2 = 0.91 for L. balthica). 

2.4 Sediment analysis 

Sediment samples were dried at 100°C for 6-8 hours, weighed and treated with a 10% hydrogen 

peroxide (H2O2) solution for 12-24 hours to oxidize all organic constituents. Samples were 

subsequently rinsed with freshwater through sieves of 2 mm and 63 µm mesh size until the water was 

clear. Particulate matter >2 mm (gravel, stones, shells etc.) was separated, dried together with the 

washed samples at 100 °C for 6-8 hours and weighed. To analyse grain size distribution, a subsample 

of 50 to 80 g was sieved in ¼ Phi fractions for 10 minutes with twenty-one sieves ranging from 63 µm 

to 2 mm mesh (modified in accordance with Buchanan, 1984). Grain size statistics (e.g. mean, mode, 

sorting etc.) were calculated using GRADISTAD using their terminology (Blott and Pye, 2001).  

2.5 Bivalve species community analysis 

Bivalve species data (abundance and ash-free dry mass) were standardized to m-2 and g m-2 

respectively and abundance, ash-free dry mass and flesh-to-shell ratio are given as means ± standard 

deviation. All statistical analyses were performed with R (R Core Team, 2017), except for simple linear 

regression (performed in Microsoft Excel 2013). All maps were produced with ArcGIS (ESRI, Version 

10.2.1, 2013). Bivalve species composition was tested for differences within each area and between 

areas. Abundance, ash-free dry mass and flesh-to-shell ratio data were tested for normality and 

homogeneity of variances. Ash-free dry mass and flesh-to-shell ratio of all bivalves were tested for 

potential significant differences in population variances. Significant differences of ash-free-dry mass 

and flesh-to-shell ratio means were determined via post hoc tests (USERFRIENDLYSCIENCE package, 

Peters, 2018). 

Bivalve species communities in the samples from the moulting and wintering areas combined were 

classified in terms of species abundance (ind. m-2) using a cluster analysis based on Bray-Curtis 

dissimilarities (VEGAN package, Oksanen et al., 2018). The potential influence of the variables “year” 

(2015 – 2018), “season” (moult or winter) or “month” (Feb, Apr, May, Jul, Oct, Nov) on the hierarchical 

clustering was tested with nested PERMANOVA analysis using the Adonis function in VEGAN (Oksanen 

et al., 2018, modified by Martinez Arbizu, 2017). To contrast the seasonally different distributions of 

moulting and wintering scoters, we defined two clusters a priori: one representing the moulting and 

the second representing the wintering area. Differences in bivalve communities between those 

clusters were assessed post hoc by a multilevel pairwise comparison (PERMANOVA) using the Adonis 

function in VEGAN (Oksanen et al., 2018, modified by Martinez Arbizu, 2017). The most dominant 
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species separating different communities were specified using similarity percentage analysis (SIMPER, 

Warton et al., 2012). We used multilevel pattern analysis (INDICSPECIES, De Caceres and Legendre, 

2009) to determine the strength and significance of the association between species occurrence and 

communities.  

Relationships between bivalve species abundance or ash-free dry mass and environmental variables 

were examined using Spearman or Pearson rank correlations (depending on whether data was 

normally distributed or not), using only bivalve species occurring at > five stations. Environmental 

variables were assigned to the benthos data by spatially joining them in ArcGIS. Selected parameters 

were different sediment characteristics (sediment type, sorting, sorting [µm], mean, median, mode 1), 

mud content [%], water depth [m], distance to coast [km] and bed sheer stress [N m-2]. All values 

referring to sediment characteristics, mud content and water depth were taken from data we recorded 

during surveys (water depth) or determined by sample analysis (sediment characteristics, mud 

content). Distance to coast of sampling stations was calculated based on data provided by the national 

park administration for Schleswig-Holstein (NPV Schleswig-Holsteinisches Wattenmeer). Bed shear 

stress values were calculated from the numerical model by Kösters and Winter (2014). Environmental 

data were initially analysed for collinearity by using variance inflation factor (VIF) analysis (Zuur et al., 

2009). The bioenv function was used to identify the best subset of environmental variables with the 

maximum rank correlation (VEGAN, Oksanen et al., 2018). Correlations between community and 

environmental dissimilarity matrices were calculated using the mantel function (VEGAN, Oksanen et 

al., 2018). 
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Results 

3.1 Moulting area  

3.1.1 Bivalve species composition and characterisation  

In total, 16 different bivalve species were found in the moulting area. Due to strongly varying 

abundances, only 10 species were considered for further analyses. Total abundance of those bivalves 

varied between 10 and 4740 ind. m-2 (mean 550 ± 833 ind. m-2) per sample. Mean abundance for each 

bivalve species is given in Table 1. 

Samples from the moulting area were numerically dominated by Ensis leei (93%), followed by Limecola 

balthica (4%), Abra alba (1.5%) and Petricolaria pholadiformis (1%), contributing 99.5% of the total 

bivalve species abundance; their distribution and relative abundance are shown in Fig. 2. Study sites 

sampled during pre-moult (May and July 2016, April 2017) were dominated by E. leei (92%), followed 

by L. balthica (6%) and P. pholadiformis (1.7%), which together represented 99.7% of total bivalve 

species abundance. Post-moult, E. leei (95%) again dominated, followed by A. alba (2%) and L. balthica 

(1%), which together represented 98% of total bivalve species abundance. 

3.1.2 Ash-free dry mass and flesh-to-shell ratio 

Of the nine analysed bivalve species, P. pholadiformis had the highest ash-free dry mass (mean 0.635 

± 0.392 g m-2), followed by E. leei (mean ash-free dry mass 0.341 ± 0.729 g m-2) and L. balthica (mean 

ash-free dry mass 0.293 ± 0.458 g m-2). Mean ash-free dry mass of A. alba was relatively low (0.054 ± 

0.030 g m-2). Ash-free dry mass and flesh-to-shell ratio for all bivalve species are shown in Table 1. 

While E. leei dominated the bivale community in terms of abundance during pre- and post-moult, P. 

pholadiformis had the highest ash-free dry mass among pre-moult samples and L. balthica among post-

moult samples (see Appendix Table 2). 

Significant differences in ash-free dry mass were found between E. leei and A. alba, the Furrow Shell 

(Abra prismatica), the Striped Venus (Corbula gibba) and the Banded Wedge Shell (Donax vittatus, Fig. 

3a). L. balthica showed significant differences in ash-free dry mass to all species except the Common 

Nutclam (Nucula nitidosa) and P. pholadiformis. N. nitidosa showed significant differences to all species 

except D. vittatus and F. fabula. P. pholadiformis showed significant differences to all species. 

E. leei had the highest flesh-to-shell ratio (mean 0.407 ± 0.708), followed by L. balthica (mean 0.244 ± 

1.632), A. alba (mean 0.205 ± 0.097) and P. pholadiformis (mean 0.197 ± 0.045). 

Significant differences in flesh-to-shell ratio were found between E. leei and A. prismatica, C. gibba, D. 

vittatus, F. fabula and N. nitidosa (Fig. 3b). F. fabula showed significant differences to A. alba, C. gibba, 

D. vittatus, N. nitidosa and P. pholadiformis. 
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Fig. 2. Spatial distribution and abundance (ind. m-2) of (a) Abra alba, (b) Ensis leei, (c) Limecola balthica 

and (d) Petricolaria pholadiformis in the Common Scoter moulting area. Samples were collected during 

November 2015, May/July/October 2017 and April 2017.  
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Fig. 3. Boxplots showing (a) the ash-free dry mass and (b) the flesh-to-shell ratio of the most abundant 

bivalve species found in the Common Scoter moulting area. Significant differences in means in ash-

free dry masses and flesh-to-shell ratio between species according to Games-Howell post hoc testing 

are indicated by species codes in red above the boxplot. Significance levels <0.001 ‘***’, 0.001 ‘**’, 

0.01 ‘*’, 0.05 ‘.’, 0.1, 1. Aa Abra alba, Ap Abra prismatica, Cg Corbula gibba, Dv Donax vittatus, El Ensis 

leei, Ff Fabulina fabula, Lb Limecola balthica, Nn Nucula nitidosa, Pph Petricolaria pholadiformis 

  

a 
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3.1.3 Size classes of E. leei and L. balthica  

Pre-moult, 99.7% of E. leei individuals fell in size classes >10 and <15 mm (Fig. 4a), with 0.3% >30 and 

<60 mm and single individuals >90–95 mm and >100–105 mm. Post-moult, 91.5% fell in size classes 

>10 and <35 mm, with 8.5% in size classes >35 and <60 mm (Fig. 4b). No individuals >60 mm were 

found. During both periods, no individuals <10 mm were found. 

Pre-moult, 85.6% of L. balthica individuals ranged from >5 to 15 mm and 14.4% >15 to 30 mm (Fig. 4c). 

No individuals >30 mm were found. Post-moult, 72.3% fell intos size classes >5 and <15 mm, and 

another peak of 27.7% in size classes >15 and <25 m (Fig. 4d). No individuals >25 mm were found. 

During both periods, no individuals <5 mm were found. 

 

 

Fig. 4. Frequency distribution of individual size classes [mm] for Ensis leei (a pre-moult, b post-moult) 

and Limecola balthica (c pre-moult, d post-moult). Pre-moult samples were collected during May/July 

2016 and April 2017. Post-moult samples were collected during November 2016 and October 2016. 
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3.1.4 Sediment characteristics 

Sediment types varied from very fine (27% of all samples), fine (57%) and medium sand (8%) to coarse 

(1%) and very coarse silt (6%). Sediment grains varied from very well sorted to very poorly sorted, with 

a mean of 1.78 ± 0.84 µm. Mud content [%] in samples ranged from 0.8 to 81.8% (mean 13.2 ± 16%). 

3.2 Wintering area  

3.2.1 Bivalve species composition and characterisation 

Nine different bivalve species occurred across all samples. Due to strongly varying abundances, only 

five were considered for further analyses (Table 1). Total abundance of all bivalve species varied 

between 10 and 70 ind. m-2 (mean 22 ± 16 ind. m-2) per sample. 

F. fabula dominated (44%), followed by S. solida (20%), E. leei (10%), A. alba (10%), and the Cut-

Through Shell (Spisula subtruncata, 4%), which together represented 89% of total bivalve species 

abundance. Their distribution and relative abundance are shown in Fig. 5. 

3.2.2 Ash-free dry mass and flesh-to-shell ratio 

Of the five analysed bivalve species in the wintering area, S. solida had the highest ash-free dry mass 

(mean 1.639 ± 1.262 g m-2, Table 1), followed by L. balthica (mean ash-free dry mass 0.233 ± 0.503 g 

m-2) and A. alba (mean ash-free dry mass 0.200 ± 0.080 g m-2). Ash-free dry mass of F. fabula was 

comparatively low (mean 0.047 ± 0.084 g m-2). 

Significant differences in ash-free dry mass were found between S. solida and all species, and between 

A. alba and F. fabula (Fig. 6a). 

F. fabula had the highest flesh-to-shell ratio (mean 0.182 ± 0.038), followed by A. alba (mean 0.180 ± 

0.032) and L. balthica (mean 0.132 ± 0.036). The flesh-to-shell ratio of S. solida was comparatively low 

(mean 0.056 ± 0.007). 

Significant differences in flesh-to-shell ratio were found between L. balthica and all species, as well as 

between S. solida and all species (Fig. 6b). S. subtruncata likewise showed significant differences to all 

species. 

3.2.3. Sediment characteristics 

Sediment types varied between fine (73% of all samples), medium (13%) and coarse sand (13%). 

Sediment grains varied from very well to moderately sorted, with a mean of 1.45 ± 0.12 µm. Mud 

content [%] in samples ranged from 1.2 to 33.7% (mean 4.2 ± 6.5%). 
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Fig. 5. Spatial distribution and abundance (ind. m-2) of (a) Abra alba, (b) Ensis leei, (c) Fabulina fabula, 

(d) Spisula solida and (e) Spisula subtruncata in the Common Scoter wintering area. Samples were 

collected during February 2018. 
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Fig. 6. Boxplots showing (a) the ash-free dry mass and (b) the flesh-to-shell ratio of the most abundant 

bivalve species found in the wintering area. Significant differences in means in ash-free dry masses and 

flesh-to-shell ratio between species according to Games-Howell and Tukey’s HSD post hoc testing are 

indicated by species codes in red above the boxplot. Significance levels <0.001 ‘***’, 0.001 ‘**’, 0.01 

‘*’, 0.05 ‘.’, 0.1, 1.  Aa Abra prismatica, Ff Fabulina fabula, Lb Limecola balthica, Sso Spisula solida, Ssu 

Spisula subtruncata 

a 
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Table 1. Abundance (ind. m-2), ash-free dry mass (g m-2) and flesh-to-shell ratio for each species in each area given as mean ± standard deviation. Species with 

the highest abundance, ash-free dry mass and flesh-to-shell ratio are given in bold. The data represents results for collected bivalves of all sampling cruises 

(November 2015, May/July/October 2016, April 2017 and February 2018).  

 Abundance [ind. m-2]  Ash-free dry mass [g m-2] Flesh-to-shell ratio 
Species Moulting area Wintering area Moulting area Wintering area Moulting area Wintering area 
Abra alba (Wood, 1802) 14.2 ± 58.2 3 ± 7 0.054 ± 0.030 0.200 ± 0.080 0.205 ± 0.097 0.180 ± 0.032 
Abra prismatica (Montagu, 1808) 1.8 ± 17.3  0.035 ± 0.028  0.166 ± 0.046  
Corbula gibba (Olivi, 1792) 1.1 ± 8.8  0.038 ± 0.020  0.038 ± 0.007  
Donax vittatus (da Costa, 1778) 1.1 ±  9.1  0.030 ± 0.048  0.062 ± 0.030  
Ensis leei (M. Huber, 2015) 1003.9 ± 1680.7  0.341 ± 0.729  0.407 ± 0.708  
Fabulina fabula (Gmelin, 1791) 2.6 ± 14.5 13.4 ± 17.1 0.059 ± 0.114 0.047 ± 0.084 0.157 ± 0.058 0.182 ± 0.038 
Limecola balthica (Linnaeus, 1758) 38.8 ± 123.3 1.4 ± 4.4 0.293 ± 0.458 0.233 ± 0.503 0.244 ± 1.632 0.132 ± 0.036 
Nucula nitidosa (Winckworth, 1930) 1.2 ± 10.8  0.010 ± 0.004  0.040 ± 0.012  
Petricolaria pholadiformis (Lamarck, 1818) 9.4 ± 100  0.635 ± 0.392  0.197 ± 0.045  
Spisula solida (Linnaeus, 1758)  6.2 ± 18.1  1.639 ± 1.262  0.056 ± 0.007 
Spisula subtruncata (da Costa, 1778) 0.3 ± 2.3 1.2 ± 3.8 0.297 ± 0.284 0.161 ± 0.335 0.092 ± 0.033 0.060 ± 0.020 
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Cluster analysis and correlations with environmental parameters  

To compare benthic bivalve communities between the moulting and the wintering area, we defined 

both as two separate clusters a priori. The pairwise multilevel comparison (Adonis) showed a 

significant separation between them (P = 0.001). We could not detect an influence of sampling year, 

season or month (see Appendix Table A.3).  

E. leei and L. balthica were the characteristic species in the moulting area cluster with E. leei alone 

contributing >90 % to Bray-Curtis dissimilarities (Table 2). Six different bivalve species were identified 

as characteristic in the wintering area cluster contributing > 90% to Bray-Curtis dissimilarities: F. fabula, 

S. solida, E. leei, A. alba, L. balthica and S. subtruncata (Table 2).  

The SIMPER and INDICSPECIES analysis both showed that the moulting area cluster was dominated by 

E. leei and L. balthica with both species being significantly associated to this cluster as well (E. leei P= 

0.001 and L. balthica P= 0.001). F. fabula (P= 0.001), S. solida (P= 0.008) and S. subtruncata (P= 0.022) 

were the dominating and significantly associated species in the wintering area cluster. 

According to the Variance inflation factor (VIF) analyses, only mean particle size showed 

autocorrelation (see Appendix Table A.4). Against all expectations, no significant correlations were 

found between clusters and environmental parameters (Table 3). Regarding bivalve species, only E. 

leei showed a significant correlation with the environmental variables median particle size and sorting 

(P = 0.001). 
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Table 2. Characterisation of the two clusters described by the occurrence of their characteristic species. 
 

 

 

 

 

 

Species dominating each cluster are given in bold. Species significantly associated with a cluster are indicated with an asterisks. Statistical significance codes: 

<0.001 ‘***’ 0.001 ‘**’ 0.01 ‘*’. 

Table 3. Summary of the correlations between environmental parameters and clusters as well as species.  
 

 Parameters for best model   r2 P 
Cluster moulting area Sorting [µm], Mud content [%] 0.05 0.863 
Cluster wintering area Sediment type 0.27 0.678 
      

Abra alba Water depth [m] 0.12 0.357 
Abra prismatica Sorting 0.47 0.591 
Ensis leei Median, Sorting  0.25 0.001 ** 
Fabulina fabula Bed shear stress, Distance to coast [km], Mode 1 0.09 0.945 
Limecola balthica Distance to coast [km], Water depth [m] 0.11 0.989 
Spisula solida Sorting 0.64 0.568 
Spisula subtruncata Bed shear stress, Sorting [µm], Water depth [m] 0.32 0.705 

Spearman’s/Pearson’s correlation coefficient r2 and the P-value are given for each correlation. Significant P-values are given in bold. Statistical significance codes: 

<0.001 ‘***’ 0.001 ‘**’ 0.01 ‘*’

 Cluster moulting area Cluster wintering area 
Characterstic species Ensis leei *** 90.11 Fabulina fabula *** 43.43 
(Contribution [%]) Limecola balthica *** 5.61 Spisula solida ** 20 
  Abra alba 1.85 Ensis leei 13.14 
    Abra alba 9.71 
    Limecola balthica 4.57 
    Spisula subtruncata * 4 
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Discussion 

4.1 Benthic bivalve communities  

Multivariate classification of benthic bivalve communities revealed significant differences in terms of 

species composition between scoter moulting and wintering areas. Overall, 19 bivalve species were 

collected, only six were present in both areas (A. alba, the Striped venus (Chamelea striatula), E. leei, 

F. fabula, L. balthica and S. subtruncata). The total bivalve abundance and species richness were much 

higher in the moulting compared to the wintering area. Based on the differences in the distribution of 

moulting and wintering scoters, we separated our data into two different clusters (moulting vs. 

wintering area). However, we would expect benthic species community characteristics to underlie 

seasonal influences. The fact that we could not find an impact of sampling year, month or season on 

the data is likely caused by insufficient sampling coverage across years in both study areas. Therefore, 

we need more detailed data to verify our findings in terms of spatial and seasonal variability. 

The frequency distribution of E. leei size classes in the moulting area suggested the majority were 

juveniles (>20-60 mm) and spawn (<20 mm), most likely from 2015 (juveniles) and 2016 (spawn, see 

Kenchington et al., 1998 and Armonies and Reise, 1999 for size class data). This indicates a 

reproduction and recruitment peak in the two years prior to the survey. Other studies have reported 

increasing E. leei abundance elsewhere in the North Sea (Houziaux et al., 2011, Dekker and Beukema, 

2012, Troost et al., 2017) and German Bight (Armonies and Reise, 1999, Dannheim, 2002, Dannheim 

and Rumohr, 2012). In Belgian waters, important recruitment events have taken place since at least 

2007 (Houziaux et al., 2011). In Dutch waters, recruitment peaks were observed starting in 2004/05 

(Dekker and Beukema, 2012). Our findings suggest continuous successful reproduction and 

recruitment in the North Sea contributes to the increasing distribution and abundance of this alien 

species. Which factors (e.g. environmental parameters such as temperature during the winter or 

reproductive period) are contributing to these recruitment peaks remains to be verified (Houziaux et 

al., 2011, Dekker and Beukema, 2012). 

Explaining lower bivalve abundance and species richness in the wintering area remains challenging. 

We cannot exclude the contribution of seasonal declines in densities to the lower abundance and 

species richness in the wintering area (sampled during a single survey in February) compared to the 

moulting area (sampled in summer/early winter). Reiss and Kröncke (2005) demonstrated that 

seasonal variability of benthic communities in the German Bight was influenced by an interaction of 

food availability, water temperature, predation and hydrodynamic stress. Armonies et al. (2001) 

demonstrated severe winters could lead to increased mortality in several different bivalve species. 

Severe winters in the North Sea are often accompanied by easterly winds, which might displace 

bivalves into deeper waters, reducing abundance closer to the coast. Hostile environmental conditions, 
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such as the strong currents in the wintering area, may inhibit the settlement of juvenile benthic 

organisms into the sediment. Conversely, higher water temperatures can enhance energy expenditure, 

reducing energetic investment in gamete production (Honkoop and Beukema, 1997, Beukema et al., 

1985, 2001, 2009, 2014) affecting abundance in subsequent years. The 2016/17 and 2017/18 winters 

were comparatively mild, which might have contributed to low bivalve reproduction rates. Our study 

results suggest that this could be the case for all bivalve species except E. leei. Dekker and Beukema 

(2012) previously suggested that Ensis recruitment might be less susceptible to changes in water 

temperature compared to other bivalve species. 

4.2 Cluster analysis and correlations with environmental parameters  

The differentiation between the two clusters was distinct. Performing a community analysis without 

the a priori definition also confirmed a discrete differentiation of clusters between both areas. This 

indicates that the species composition of each cluster was strongly characteristic for either the 

moulting or the wintering area. However, as our samplings did not cover all seasons in both areas, we 

need more data to verify our findings and determine whether the differences in bivalve communities 

between both areas are based on either spatial or seasonal variations. Due to its abundance at large 

spatial scales, E. leei had a substantial influence on the cluster in the moulting area. In the wintering 

area, where E. leei was less frequent, the cluster was characterised by the two most abundant bivalve 

species, in this case F. fabula and S. solida. Dannheim and Rumohr (2012) reported that E. leei 

integrated into the existing communities along the Frisian coast without suppressing any other species. 

Schwemmer et al. (2019b, this issue) found that modelling the distribution of E. leei in the north-

eastern German Wadden Sea revealed an overlap with native benthic species causing potential 

competition for resources. Our results demonstrate how the high abundance of this non-native species 

influences benthic coastal communities, although the abundance of traditionally dominant L. balthica 

and F. fabula have apparently been stable on a long term basis (e.g. Racher and Nehmer, 2003, Kröncke 

et al., 2011). 

Only in the case of E. leei did we find a correlation with median particle size and sediment sorting. 

Except for the spatial dominance of one or more bivalve species, the cluster differences could not be 

explained by any of the environmental variables we incorporated in our explanatory models. This 

might be caused by insufficient seasonal coverage or the sampling of inappropriate environmental 

parameters. Water temperature, chlorophyll a concentration or other factors might be of greater 

importance in explaining bivalve distribution and abundance, but such data were not available at 

sufficient spatial and temporal resolution to be incorporated in these analyses. Some of the sampled 

environmental parameters (e.g. sediment characteristics) were very uniform in both areas, which 

might explain the lack of correlations. Alternatively, biotic interactions between bivalve benthic species 
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might be more decisive at small spatial scales (Reiss et al., 2009) and influence species community 

composition. On larger spatial scales, gradients in environmental parameters (such as water depth, 

sediment or bed shear stress) can be crucial to the composition of benthic communities (Reiss and 

Kröncke, 2005, Kröncke et al, 2011). At smaller spatial scales, gradients in these parameters are less 

likely and therefore interactions between benthic species could be of greater importance. 

Unfortunately, we could not incorporate this feature into our analysis as we only sampled bivalves, not 

the complete benthic community. 

4.3 Relationship between bivalve communities and Common Scoter distributions 

Despite distinct difference in benthic communities, bivalve species present in both areas had similar 

mean ash-free dry masses and flesh-to-shell ratios in moulting and wintering areas, suggesting both 

regions are equally profitable to foraging bivalve predators. This might also compensate for their 

reduced abundance, especially in the wintering area. Even if bivalve species were less numerous, they 

still provide a profitable energy resource. Despite P. pholadiformis having the highest ash-free dry 

mass, it is not a species Common Scoters forage on as it prefers consolidated, peaty sediment. All 

bivalve species, which were listed as important prey items for scoters (e.g. A. alba, C. edule, L. balthica) 

in a review of Fox (2004) were found in both study areas. Common Scoters are believed to prefer 

shallow waters and sandy substrates, in which they can easily access their prey (Madsen, 1954). They 

preferentially select individuals scaling between 5 and 20 mm in length, sometimes up to 40 mm 

(Madsen, 1954, Fox, 2004). Particularly the numerous E. leei individuals found in the moulting area 

match these shell lengths very well. Additionally, prey depletion in areas of shallowest water may 

simply force birds to forage for the same prey at similar densities in progressively deeper water as the 

winter progresses. Regions with the shallowest water depths were precisely the areas, where we also 

found the highest E. leei (and L. balthica) densities. Dannheim and Rumohr (2012) found high densities 

of E. leei in the moulting and wintering area as long ago as 2000/2001. Schwemmer et al (2019b, this 

issue) reported high abundances of E. leei along the North Frisian Islands throughout the year. Seabirds 

at Sea surveys indicate an increase in scoter densities in the moulting and wintering areas in recent 

years (FTZ unpublished data). The consistent successful reproduction and recruitment of E. leei 

(especially in the moulting area) might have contributed to providing profitable energy resources and 

thus might support increasing scoter numbers with a reliable food resource for longer periods across 

seasons. Nevertheless, we need more data on bivalve communities (especially in the wintering area) 

across seasons to verify our findings.  

Conclusions 

Our results showed that two areas characterised by their differences in seasonal use by Common 

Scoter displayed strong differences in the benthic bivalve communities, abundance and species 
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richness they supported. Food profitability and ash-free dry mass did not differ between study areas, 

suggesting early season moulting Common Scoter select to feed in the moulting area due to the greater 

abundance of bivalves, especially the extremely abundant and profitable invasive alien E. leei. 

Although environmental parameters did not explain differences in bivalve community compositions, 

the consistent difference seems likely to explain why Common Scoters first forage in the moulting 

areas and continue to do so through the winter. Later, they spread into more northerly areas where 

the food resource would appear less profitable. Based on the results of our study, we conclude that 

the factor mostly influencing the distribution patterns of Common Scoters was the abundance of their 

bivalve prey, likely moderated by water depth and other factors affecting food availability (such as 

disturbance from shipping). In order to get deeper insight into the relations of Common Scoter 

distribution, not only the location and dispersal of their prey needs to be considered. Environmental 

parameters, such as water depth, bed shear stress and sediment characteristics, need to be 

incorporated as well, as these also have an influence on bivalve distribution. However, we still need to 

know a great deal more about the seasonal and inter-annual changes in benthic bivalve species 

abundance, age-class distributions and community composition before we can better understand the 

numerical responses of the Common Scoter on the surface to their food supply in the sediment below. 
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Appendices 

Glossary 

Aa 
Ap 
Cg 
Dv 
El 
Ff 
Lb 
Nn 
Pph 
Sso 
Ssu 

Abra alba 
Abra prismatica 
Corbula gibba 
Donax vittatus 
Ensis leei 
Fabulina fabula 
Limecola balthica 
Nucula nitidosa 
Petricolaria pholadiformis 
Spisula solida 
Spisula subtruncata 

White Furrow shell 
Furrow shell 
Basket shell 
Banded Wedge shell 
American Razor clam 
Bean-like Tellin 
Baltic Tellin 
Nutclam 
American Piddock 
Surf Clam 
Cut-Through shell 
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Table A.1. Abundance (ind. m-2), ash-free dry mass (g m-2) and flesh-to-shell ratio for all species in both sampling areas given as mean ± standard deviation. The 

data represents results for collected bivalves of all sampling cruises (November 2015, May/July/October 2016, April 2017 and February 2018).  

 

  

 Abundance [ind. m-2]  Ash-free dry mass [g m-2] Flesh-to-shell ratio 
Species Moulting area Wintering area Moulting area Wintering area Moulting area Wintering area 
Abra alba (Wood, 1802) 14.2 ± 58.2 3 ± 7 0.054 ± 0.030 0.200 ± 0.080 0.205 ± 0.097 0.180 ± 0.032 
Abra prismatica (Montagu, 1808) 1.8 ± 17.3  0.035 ± 0.028  0.166 ± 0.046  
Barnea candida (Linnaeus, 1758) 0.15 ± 1.9  1.379 ± 0.817  0.530 ± 0.231  
Cerastoderma edule (Linnaeus, 1758) 0.12 ± 1.1  3.445 ± 2.793  0.072 ± 0.025  
Chamelea striatula (da Costa, 1778) 0.12 ± 1.4 0.53 ± 2.3 0.250 ± 0.089 0.296 ± 0.394 0.051 ± 0.006 0.043 ± 0.014 
Corbula gibba (Olivi, 1792) 1.1 ± 8.8  0.038 ± 0.020  0.038 ± 0.007  
Donax vittatus (da Costa, 1778) 1.1 ±  9.1  0.030 ± 0.048  0.062 ± 0.030  
Ensis leei (M. Huber, 2015) 1003.9 ± 1680.7 4.1 ± 7.3 0.341 ± 0.729 6.301 0.407 ± 0.708  
Fabulina fabula (Gmelin, 1791) 2.6 ± 14.5 13.4 ± 17.1 0.059 ± 0.114 0.047 ± 0.084 0.157 ± 0.058 0.182 ± 0.038 
Limecola balthica (Linnaeus, 1758) 38.8 ± 123.3 1.4 ± 4.4 0.293 ± 0.458 0.233 ± 0.503 0.244 ± 1.632 0.132 ± 0.036 
Mactra stultorum (Linnaeus, 1758) 0.6 ± 3.1  2.410 ± 1.909  0.207 ± 0.049  
Macomangulus tenuis (da Costa, 1778)  0.18 ± 1.3  0.566   

Mya truncata (Linnaeus, 1758) 0.08 ± 0.9  3.184 ± 3.981  0.393 ± 0.085  
Mytilus edulis (Linnaeus, 1758) 0.09 ± 1.1  0.222 ± 0.171  0.124 ± 0.084  
Nucula nitidosa (Winckworth, 1930) 1.2 ± 10.8  0.010 ± 0.004  0.040 ± 0.012  
Phaxas pellucidus (Pennant, 1777)  0.9 ± 4.4  0.280 ± 0.034   

Petricolaria pholadiformis (Lamarck, 1818) 9.4 ± 100  0.635 ± 0.392  0.197 ± 0.045  
Spisula solida (Linnaeus, 1758)  6.2 ± 18.1  1.639 ± 1.262  0.056 ± 0.007 
Spisula subtruncata (da Costa, 1778) 0.3 ± 2.3 1.2 ± 3.8 0.297 ± 0.284 0.161 ± 0.335 0.092 ± 0.033 0.060 ± 0.020 
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Table A.2. Abundance (ind. m-2), ash-free dry mass (g m-2) and flesh-to-shell ratio for each species during pre- and post-moult period given as mean ± standard 

deviation. Species with the highest abundance, ash-free dry mass and flesh-to-shell ratio are given in bold. Pre-moult samples were collected during May/July 

2016 and April 2017. Post-moult samples were collected during November 2015 and October 2017.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Abundance [individuals m-2] Ash-free dry mass [g m-2] Flesh-to-shell ratio 
Species Pre moult Post moult Pre moult Post moult Pre moult Post moult 
Abra alba  7.42 ± 24.48 20.22 ± 76.06 0.059 ± 0.028 0.053 ± 0.030 0.34 ± 0.08  0.16 ± 0.05 
Abra prismatica   3.53 ± 23.62  0.035 ± 0.028  0.17 ± 0.05 
Corbula gibba   1.99 ± 12.04  0.038 ± 0.020  0.04 ± 0.01 
Donax vittatus   2.06 ± 12.48  0.030 ± 0.048  0.06 ± 0.03 
Ensis leei  1093.25 ± 1633.48 925.15 ± 1723.56 0.022 ± 0.091 0.154 ± 0.201 0.54 ± 0.95 0.37 ± 0.61 
Fabulina fabula  0.33 ± 1.80 4.63 ± 23.79 0.462 ± 0.113 0.032 ± 0.041 0.27 ± 0.05 0.15 ± 0.05 
Limecola balthica  70.49 ± 173.62 10.81 ± 21.6 0.198 ± 0.340  0.257 ± 0.536 0.16 ± 0.06 0.35 ± 2.47 
Nucula nitidosa   2.35 ± 14.67  0.010 ± 0.004  0.04 ± 0.01 
Petricolaria pholadiformis  20.08 ± 145.72  0.635 ± 0.392  0.20 ± 0.04  
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Table A.3. Pairwise multilevel comparison of the potential influence of sampling year, season or month 

for data collected in the moulting area.  

 

 

 

 

 

 

 

 

Codes to identify levels of statistical significance: <0.001 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1” 

Table A.4 Variance inflation factors for the environmental parameters used in the correlation. VIF 

Variance inflation factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Year/Season/Month F. Model R2 P-value P adjusted 

2015 vs 2016 NaN 1 NA NA 

2015 vs 2017 NaN 1 NA NA 

2016 vs 2017 NaN 1 NA NA 

Pre-moult vs Post-moult NaN 1 NA NA 

Apr vs May+Nov  8.663 0.896 0.333 1 

Apr vs July+Oct 7.484 0.882 0.333 1 

May+Nov vs Jul+Oct 12.04 0.857 0.333 1 

Parameter VIF  
Bed shear stress 1.20 
Distance to coast [km] 2.69 
Mean 20.22 
Median 5.33 
Mode 1 13.37 
Mud content [%] 4.13 
Sediment type 1.44 
Sorting 5.08 
Sorting [µm] 10.18 
Water depth [m] 2.06 
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Abstract  

Since its introduction from North America in the 1970s, the American razor clam Ensis leei (M. Huber, 

2015) has successfully spread throughout North Sea coasts from Spain to Norway and the United 

Kingdom to the Western Baltic. We investigated the distribution and abundance of this non-indigenous 

bivalve species as a potential novel food resource for common scoter Melanitta nigra (Linnaeus, 1758) 

along the eastern German North Sea coast. Highest densities of flightless moulting and wintering 

common scoters coincided with areas of high E. leei abundance. Other European studies showed 

common scoters extensively feed on E. leei. Even with these findings, it remains difficult to 

demonstrate convincingly that E. leei constitutes a major food source for common scoter in the 

German North Sea during their non-breeding season. However, our study suggests that E. leei has 

become an important prey item for internationally important concentrations of common scoters at 

large spatial scales, including within EU Birds Directive protected areas designated for the species. This 

finding is unusual for an abundant marine invasive alien species. 

Keywords:  American razor clam · Ensis leei · common scoter · German Bight · Melanitta nigra · subtidal 

benthos  
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Introduction 

Invasive species constitute one of the most serious threats to global marine biological diversity (Molnar 

et al. 2008) potentially affecting ecosystem function, goods and services (Bax et al. 2003). Being less 

susceptible, for instance, to endemic competitors, predators, diseases or parasites, they can become 

extremely abundant and dominate host systems (e.g. Grosholz et al. 2000). However, it is known that 

some avian predators make use of aquatic alien bivalve species as novel food resources (e.g. Cadee 

2001 or Werner et al. 2005). 

Of several marine alien species introduced to the German North Sea since the early 18th century, some 

now only persist within limited ranges whereas others have become widespread (Gollasch 2006; 

AquaNis 2015). The American razor clam (Ensis leei, see caption of Fig. 2 for taxonomic authorities) 

was first recorded in the German North Sea in 1979 (Cosel et al. 1982), but now it occurs from Spain 

to Norway, the UK and the Western Baltic Sea (Gollasch et al. 2015). It has rapidly increased in 

abundance and biomass over the last three decades in the Dutch (Dekker and Beukema 2012) and 

more recently in the German North Sea (Dannheim and Rumohr 2012; Kottsieper et al. 2018, 

unpublished). Being common and highly abundant, E. leei potentially offers a profitable food resource 

for other species, such as benthic feeding fish and birds (Tulp et al. 2010).  

The common scoter (Melanitta nigra) is a sea duck species found in large numbers along the German 

North Sea coasts during moulting (July-September) and wintering seasons (October-March; Mendel et 

al. 2008). Its distribution patterns are regularly monitored along the Dutch, German and Danish 

Wadden Sea coasts (e.g. Markones and Garthe 2011; Pihl et al. 2015; Fijn et al. 2017). Scoters 

predominantly feed on sedentary bivalve prey, which are highly abundant and easily accessible at any 

given site. They select mostly individuals ranging between 5 and 20 mm, and sometimes up to 40 mm, 

in length (Madsen 1954; Fox 2004). Recent studies report sea ducks such as common scoters actively 

feed on E. leei (e.g. Leopold and Wolf 2003; Leopold et al. 2007; Tulp et al. 2010). However, although 

the local distribution patterns of both common scoters and E. leei have been described, few studies 

have attempted to demonstrate large-scale connections between distributions of these avian 

predators and their benthic bivalve prey. Furthermore, few authors have demonstrated a direct 

connection by investigating the dietary contributions of E. leei by analysing stomach contents of dead 

scoters (but see Freudendahl and Jensen 2006; Leopold et al. 2007; Schwemmer et al. 2018 

unpublished).  

To investigate the importance of E. leei as a food resource, we studied its distribution pattern in the 

German Bight. We also mapped the distribution patterns of moulting (i.e. flightless) and wintering 

common scoter. Based on these distributions, we raised the following hypotheses:  



 

 
 

68 

 
An invasive alien bivalve apparently provides a novel food source for moulting and wintering 
benthic feeding sea ducks 

1. High(est) densities of common scoters are found in areas with high(est) densities of E. leei.  

2. Where present, E. leei is more abundant compared to other native bivalve species and can 

thus contribute a major share to common scoter diets.   

Material and Methods 

2.1 Study areas 

The study areas were located in the sublitoral German North Sea along the coast of Schleswig-Holstein 

(see Fig. 1). These areas were consistently used by moulting and wintering common scoter (FTZ 

unpublished data). The moulting area covered 860 km2 in the southern German North Sea extending 

from Friedrichskoog (54°2’N, 8°34’E) to Westerheversand (54°23’N, 8°33’E) with water depths ranging 

from 1 to 16 m. The wintering area was located west of the island Sylt covering 490 km2 with water 

depths ranging from 5 to 17 m. Both areas were within the twelve nautical mile zone. Both regions are 

located in protected areas designated by the Habitats Directive and the Birds Directive, as well as being 

listed as Ramsar sites (Krause et al., 2011). 

2.2 Ensis leei distribution 

Overall, 319 benthos samples were taken with a 0.1 m2 van Veen grab in both areas. 263 samples were 

collected in the moulting area during five cruises in 2015-2017 and 56 samples were collected in the 

wintering area during one cruise in 2018. Samples were taken based on grids (either a 5x5 km grid or 

a random stratified design) with three replicates at each sampling station. Collected bivalves were 

sieved through a 2 mm mesh and frozen in zip lock bags at -20°C for subsequent analysis. E. leei 

individuals were measured with callipers to the nearest mm and their numbers were converted to 

density (number of individuals per m2 expressed as means ± standard deviation). To test for statistical 

differences in E. leei frequencies between sampling stations and areas, a chi-square test was 

performed in R (R Core Team 2017).  

2.3 Common scoter distribution  

Data from ship and aerial Seabirds at Sea (SAS) surveys conducted by the Research and Technology 

Centre (FTZ) during the moulting and wintering periods of common scoter were used to generate 

distribution patterns and calculate common scoter densities (individuals per km2 summarised for all 

surveys and rastered by 5 x 5 km grid squares). The surveys were implemented by the FTZ within a 

regular offshore seabird monitoring on behalf of the Schleswig-Holstein Agency for Coastal Defence, 

National Park and Marine Conservation-National Park Authority. Surveys were carried out following 

internationally standardized Seabirds at Sea methods (Camphuysen at al. 2004) based on line transect 

methodology including distance sampling (Buckland et al. 2015). All aerial surveys had a fixed design 

with seven nearly N-S transects parallel to the coast. The four innermost transects were spaced at a 3 
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km interval, the remaining three had a 6 km interval. Surveys were performed from a high-winged 

twin-engine Partenavia P-68 with bubble windows at a flight altitude of 76m (250 feet) and a cruising 

speed of 185km/h (100 knots). The occurrence of birds was recorded within 388m wide transects 

running parallel to the flight route of the observation platform. Ship based counts were either 

conducted parallel to the benthos sampling cruises or data were taken from regular ship based 

monitorings. Birds were recorded within a 300m wide transect running parallel to the keel line of the 

observation vessel.  Due to gaps in data, caused by either bad weather conditions or unavailability of 

ship/aircraft, data from 2015-2017 was combined. To match the benthos sampling areas, distribution 

maps are shown for the Schleswig-Holstein North Sea coast. 

Results 

3.1 Ensis leei distribution  

E. leei was more widespread and occurred at higher densities in the southern study area (1003.9 ± 

1680.7 ind/m2, exceeding 10000 ind/m2 in some samples) than in the northern study area (4.1 ± 7.3 

ind/m2). A chi-square test revealed statistically significant differences in the distribution between both 

areas (p=<0.001). E. leei densities for all sampling stations in both areas are shown in Fig. 1. E.leei was 

present at almost all sampling stations in the southern study area (see Fig. 2a), but was less prominent 

(p=<0.001) in the northern study area (Fig. 2b). Where present, E. leei dominated the benthic species 

composition in almost every single sample in the southern study area. 
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Fig. 1 Distribution and densities of Ensis leei determined from 319 benthos samples taken during 2015-

2017 in the moulting (south) and the wintering (north) area in the eastern German North Sea, which 

are consistently used by moulting and wintering common scoters Melanitta nigra



 

 
 

71 

 An invasive alien bivalve apparently provides a novel food source for moulting and wintering benthic feeding sea ducks 

 

Fig. 2 Bivalve species composition for each sampling station in (a) the moulting and (b) the wintering area. Aa Abra alba (Wood, 1802), Ap Abra prismatica 

(Montagu, 1808), Bc Barnea candida (Linnaeus, 1758), Ce Cerastoderma edule (Linnaeus, 1758), Cg Corbula gibba (Olivi, 1792), Cs Chamelea striatula (da 

Costa, 1778), Dv Donax vittatus (da Costa, 1778), El Ensis leei (M. Huber, 2015), Ff Fabulina fabula (Gmelin, 1791), Lb Limecola balthica (Linnaeus, 1758), Me 

Mytilus edulis (Linnaeus, 1758), Ms Mactra stultorum (Linnaeus, 1758), Mt Mya truncata (Linnaeus, 1758), Mte Macomangulus tenuis (da Costa, 1778), Nn 

Nucula nitidosa  (Winckworth, 1930), Pp Phaxas pellucidus (Pennant, 1777), Pph Petricolaria pholadiformis (Lamarck, 1818), Sso Spisula solida (Linnaeus, 

1758), Ssu Spisula subtruncata (da Costa, 1778) 

a b 
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3.2 Common scoter distribution 

During the time of moulting, common scoters occurred in small numbers along the entire eastern 

German North Sea coast with highest densities west of the islands Süderoogsand (810 ind/km2) and 

south west of the Eiderstedt peninsula (219 ind/km2, Fig. 3). Fewest individuals were observed in the 

northern parts west of the island of Sylt and in offshore areas. This distribution corresponded closely 

with areas of highest E. leei abundance, including areas where this species dominated the benthic 

community. Additionally, areas of highest scoter abundance were observed at the sites with the 

highest densities of small (< 2 cm in length) E. leei individuals. 

During winter, common scoters were more dispersed along the eastern German North Sea coast and 

located further offshore (Fig. 4). Higher densities were observed west of Sylt, particularly along the 

northern end and highest densities were found southwest of the Eiderstedt peninsula (618 ind/km2) 

and close to Süderoogsand (560 ind/km2). Again, the occurrence of scoters west of the Eiderstedt 

peninsula matched the locations with highest E.leei abundance.  

 

 

Fig. 3 Distribution patterns of common scoter Melanitta nigra in the German North Sea during a) the 

moulting and b) the wintering season given as individuals/km2. The map shows data from June to 

a b 
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September (moult) and December to February (winter) in the years 2015-2017. To calculate densities, 

the number of birds was summed for all surveys 

Discussion 

Our findings show that common scoters occur along the German North Sea coast in areas where E. leei 

is extremely abundant. This pattern is particularly evident during the moulting period when these birds 

cannot fly and therefore their surveyed distributions reflect their feeding grounds. Highest scoter 

abundances during moult and winter occurred in the southern German North Sea, corresponding to 

areas of highest E. leei densities based on our benthos sampling. Common scoter typically feed on 

bivalves <60 mm long (Fox 2004), although single scoters have been regularly observed feeding on 

E.leei individuals >90 mm as well (I.K. Petersen personal communication). Kottsieper et al. (2018, 

unpublished) found that the E. leei individuals sampled in both the moulting and wintering areas 

matched these size classes. Particularly in the moulting area, high densities of small E. leei specimens 

were detected. The dominance, extent and available size class distribution of E. leei throughout the 

German North Sea in areas with moulting and wintering common scoters suggests this species could 

potentially provide a profitable food resource to this sea duck species in these areas. 

Leopold and Wolf (2003) were the first to describe that scoters actively feed on the American razor 

clam. Prior to this study, Abra alba, Cerastoderma edule, Limecola balthica, Mya arenaria, Mytilus 

edulis and Spisula subtruncata, amongst others, were listed as the most important prey items (Fox 

2004). Studies from the German North Sea, however, showed that all these species had lower flesh to 

shell ratios compared to E. leei, so this species is not just most abundant but also of superior food 

quality compared to native bivalves in the area (Kottsieper et al. 2018, unpublished). A recent study 

from Fijn et al. (2017) stated that common scoters residing in the Dutch Wadden Sea preferably feed 

on Spisula subtruncata, yet the high abundances of E. leei provides enough resources to fall back on. 

Freudendahl and Jensen (2006) reported that all 26 common scoters shot at Horns Rev in the Danish 

North Sea had been feeding on E. leei. In a more recent study, Schwemmer et al. (2018, unpublished) 

analysed >100 stomachs of scoters found dead along the German North Sea coast, showing that E. leei 

was the most common species in all stomachs. However, assessing the importance of a prey by 

analysing stomach contents can be difficult. Stomachs from birds found dead on the shore inevitably 

originate from weakened individuals that have died of disease or were in poor condition and likely 

have emptied their stomachs long before being washed ashore. Collecting birds by shooting does not 

necessarily resolve this issue. Thirty wintering common scoter shot in the Wadden Sea and 59 moulting 

specimens shot in Aalborg Bugt (Denmark) had nearly empty stomachs, suggesting that birds may 

potentially feed most actively at night (Fox et al. 2008; Skov et al. 2008).  
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It is extremely challenging to prove that common scoters have switched from native prey to aggregate 

during moult and winter periods in a feeding response to E. leei density and abundance along German 

North Sea coasts. Sampling of benthos occurs at a scale (<1 m2) which is inappropriate to explain the 

distribution and abundance of common scoter that assort themselves in many thousands of individuals 

throughout more than 3000 km2 of marine habitat off the German Wadden Sea. As discussed above, 

there are limitations and challenges associated with analysing the stomach contents of dead birds to 

assess the relative importance of E. leei in the moult and wintering diet of individuals and the 

population as a whole. The flesh to shell ratio of E. leei is superior to most other sympatric bivalve 

species (Kottsieper et al. 2018, unpublished) making it highly suitable prey for scoters. However, its 

attractiveness as prey is dependent on its abundance and size class distribution relative to other 

molluscs in the same sediment and the depth of the water column through which the sea ducks have 

to dive to obtain their prey (which determines the energetic costs of obtaining such prey). Spat 

settlement, mass die-offs and predation by fish and sea ducks all affect bivalve abundance and size 

class distributions within and between seasons. In tidal marine systems, therefore, it is impossible to 

demonstrate a meaningful aggregative response of common scoters to E. leei. However, we would 

contend that based on data presented here, moulting (and therefore largely immobile) common 

scoters occur in very high densities over substrates where the benthos is composed almost exclusively 

of E. leei. We therefore assume that this highly profitable species contributes a major share to the 

scoter diet. The distribution and abundance of E. leei likely explains the distribution and abundance of 

the common scoters in their moulting and wintering areas at the present time. Modelling the 

distribution of common scoter in connection with the E. leei distribution would give us more insight 

into the relationship between both species.  

E. leei also likely explains the distribution of common scoters elsewhere and at greater geographical 

scales. Houziaux et al. (2011) reported high recruitment of juvenile E. leei in spring 2007 in the Belgian 

Wadden Sea and annual monitoring shows the species has been increasing in the Dutch Wadden Sea 

since 2010 (Troost et al. 2017). In the German North Sea, Schwemmer et al. (2018, unpublished) found 

high densities along the North Frisian Island coasts. In a previous study, Dannheim and Ruhmohr (2012) 

found high densities west of Sylt and Amrum as well as Eiderstedt. All these regions support common 

scoters and in many areas their numbers are increasing. Results from detailed benthos studies in 

German North Sea common scoter moulting areas demonstrated remarkably high abundances of E. 

leei (Kottsieper et al. 2018, unpublished), which have correlated with increasing densities of moulting 

and wintering scoter numbers in this area during the last three years (FTZ unpublished data).  

Common scoter distribution and abundance are regularly monitored throughout the annual cycle 

along Wadden Sea coasts (e.g. Markones and Garthe 2011). However, we lack spatially and temporally 
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explicit monitoring of benthic communities and the seasonal size class distributions of their 

components to help interpret their attractiveness and relative importance to feeding common scoters. 

Annual benthos monitoring occurs only in the Netherlands (e.g. Troost et al. 2017) and the few studies 

of E. leei distributions in the German North Sea have restricted spatial scales (e.g. Dannheim and 

Rumohr 2012). However, Schwemmer et al. (2018, unpublished) and Kottsieper et al. (2018, 

unpublished) have contributed new and more detailed information of recent years. Nevertheless, 

demonstrating the importance of E. leei as food for common scoters remains difficult as long as aerial 

seabird and benthos surveys are not performed simultaneously or at similar spatial scales that can 

account for shifts in patterns and seasonal differences. More detailed information on the dietary 

composition (including oesophagus, gizzard and gut contents) is needed to improve our understanding 

of common scoter diets. The results presented here confirm other studies showing that along North 

Sea coasts, E. leei has become an important element of the diet of common scoters during the critical 

moult and winter periods at large (i.e. thousands of square kilometres) spatial scales, including within 

EU Birds Directive protected areas designated for internationally important aggregations of this sea 

duck species.  
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Abstract 

The Common Scoter Melanitta nigra, a benthos-feeding marine diving duck, aggregates at important 

moulting and wintering areas along the Schleswig-Holstein North Sea coast, in the German Bight and 

in Aalborg Bugt, Denmark at the entrance into the Baltic. In Aalborg Bugt, Common Scoter occur in 

relatively sheltered areas subject to restricted tidal influence, contrasting the tidal, more exposed 

waters used off German North Sea coasts. Despite these differences, we predicted that birds would 

distribute themselves in similar ways, aggregating to moult in shallowest waters with most accessible 

prey in July, gradually dispersing to deeper (i.e. comparatively less profitable) waters through the 

season as numbers increase and (potentially) as prey is depleted. To test this hypothesis, we used 

multiple aerial survey count data to study Common Scoter distribution patterns in Aalborg Bugt and 

the German Bight. Common Scoter displayed similar distribution patterns in both areas, showing 

significant increases in mean water depth (from 6.3 m in July to 9.8 m in March in Denmark, 6.5 m to 

10.3 m in Germany), number of flock units (432 to 1614; 48 to 581) and the percentage of 3 x 3 km 

grid squares occupied by birds as the season progressed (15% to 44% of 628 grid cells; 1% to 39% of 

408 grid cells). These results support the hypothesis that these predatory birds distribute themselves 

to maximise their nutritional and energetic intake while minimising costs of gaining food in two 

contrasting marine environments.  

 

KEY WORDS: Common Scoter · Diving depth · Entropy · Melanitta nigra · Wintering distribution 
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Introduction 

Common Scoter Melanitta nigra are benthic bivalve-feeding diving sea ducks (Fox 2004), which breed 

in the tundra and sub-arctic boreal and winter in large numbers around European coasts (Kear 2005). 

Recent suspected declines in their wintering numbers have raised concerns about their future 

conservation (Skov et al. 2011), focusing attention on the need to understand factors affecting their 

distribution and abundance, especially with regard to the provision of cohesive protected area 

networks for the effective protection of their favoured habitats. Key moulting (late summer) and 

wintering areas for this species exist in the Danish Aalborg Bugt (56°55’N 11°00’E, in the relatively 

sheltered moderately tidal Kattegat, see Fig. 1) and in the German North Sea (54°15’N 8°15’E, in 

strongly lunar tidal, more saline exposed waters off the Wadden Sea, see Fig. 2). Both sites are known 

to support moulting males from June onwards (which are flightless while replacing wing feathers e.g. 

Fox et al. 2008), as well as increasing numbers of females and first winter birds arriving from breeding 

areas to aggregate in the same areas to winter (Spalke et al. 2013, 2014, Holm et al. 2018). Up to 

220,000 Common Scoters also occur on the Odra Bank in the southern German Baltic Sea (54°27’N 

14°21’E), including moulting birds (Sonntag et al. 2004), but here we only present data from the 

German North Sea to contrast a moulting area in the more sheltered non-tidal Kattegat with one in 

the more exposed tidal North Sea.  

Predators of sedentary prey should assort themselves in relation to prey density (the aggregative 

response), a response mediated by intake rate in relation to prey density (the functional response, 

Holling 1959). Since increasing prey densities support greater intake rates, predators should gather at 

patches of highest densities to maximize long-term intake-rates (Stephens & Krebs 1986). In reality, 

predators disperse between patches of different profitability due to foraging costs, predation risk, 

interference competition and imperfect knowledge of available resource densities (Goss-Custard 1980, 

Bernstein et al. 1991, Bautista et al. 1995, Piersma et al. 1995). Since Common Scoters wintering in 

European waters are exposed to few known predators, it seems likely that the relatively low levels of 

predation risk to which they are exposed are evenly distributed, so this factor is unlikely to determine 

major patterns in feeding distribution. Depth-dependent differences in the energy required to descend 

through the water column result in foraging costs increasing rapidly with the depth of the water 

column (Lovvorn et al. 1991, Lovvorn & Jones 1991, Lovvorn 1994). Hence, food size and the locomotor 

costs of diving largely determine the feeding profitability of diving sea ducks feeding on benthic prey. 

Simultaneously, factors such as water temperature, food dispersal, search and handling time have 

relatively little additional influence on the relative costs and benefits (Lovvorn & Gillingham 1996). 

Common Scoter only seem to aggregate in large numbers in association with abundant bivalve stocks, 

often consisting of only one species, where the density of biomass can support large numbers of these 
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predators (Fox 2004, Kottsieper et al. submitted 2018a). Although bivalve stocks can be affected by 

cold winters, storms and mass starvation events, it is generally the case that these organisms are 

sedentary and have only one reproductive pulse in the year (Gosling 2015). Hence, their availability as 

prey is likely to be more or less constant through the period when Common Scoters feed upon them, 

affected largely only by prey depletion from birds and other predators. In the case of the Common 

Scoter in the German North Sea and Danish Aalborg Bugt, we would hypothesise that the arriving 

moulting birds initially disperse themselves in the shallowest water areas within their regular wintering 

areas with an abundant food supply. As the season progresses and more birds arrive, we would predict 

that the birds increasingly disperse in deeper waters (because of prey depletion and intraspecific 

competition), where prey densities may be similar, but costs of access in deeper water are greater. 

Finally, we would predict the greatest dispersal at the end of the winter, when bird densities and prey 

depletion combine to disperse Common Scoter over the largest areas, fragmented into smallest 

groups. Based on this hypothetical framework, we make four predictions for the development in the 

pattern of dispersal of the species in both areas in the course of the season. These are that:  

(i) the mean water depth used by Common Scoter would increase from June to March/April. 

(ii) the area of habitat occupied by the birds would increase. 

(iii) the large predator aggregations associated with the densest food concentrations will 

deplete these resources and may contribute to force birds to disperse into smaller flocks 

through the winter, resulting in: 

(iv) greater entropy as their distribution becomes more even.  

In this analysis, we use sequential aerial surveys within and between years from both areas to find 

support for these predictions.  

 

Methods 

2.1 Aerial survey techniques 

In the Danish Aalborg Bugt, Common Scoter were counted from high-winged twin-engine Parternavia 

P-68 Observer aircraft flying at 76 m (250 feet altitude) and approximately 185 km h-1 (100 knots). 

Trained observers identified and counted all waterbird species encountered and assigned them to 

three bands at successive distances from the flight line (46-163 m, 164-432 m, and 433-1500 m 

determined by the observers’ use of a clinometer set to predetermined angles from the horizontal). A 

band extending 46 m to either side of the flight line could not be observed adequately below, and birds 

observed in this band were disregarded. As observations were “binned” in this way, it was not possible 

to assign Common Scoters to true flocks, but in this analysis, the separation of groups along the axis of 

flight are used to define discrete blocks of birds, which we hereafter refer to as spatially explicit “flock 
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units”. Bird behaviours (sitting on water, diving, flushing or diving) and numbers were continuously 

recorded directly onto a Dictaphone, assigning all flock units or individuals to a distance band and a 

time; all these forms of registrations are considered here. The aircraft flew between waypoints entered 

into the navigation system and a computer logged the flight track from a differential GPS device 

accurate to 2 m at five-second intervals. This provided the position and time stamp to link subsequently 

transcribed bird observations to a geographical position (considered accurate to within 4 seconds), 

geographically spread left or right of the track line according to observers side of the aircraft and out 

to a distance perpendicular to the track line according to the transect bin. Encountering very dense 

flock units rarely grouped observations over 10 seconds, so we consider positional longitudinal 

accuracy was within less than 206 m of reality, occasionally 515 m. Although these observation 

methods do not strictly record flock size (since this was not a design objective), we consider this 

method of capturing spatial observations standardises our recording of separate blocks of birds. 

Surveys were never carried out when conditions of severe sun glare, poor light or wind speeds > 6 m 

s-1 occurred (see Petersen et al. 2003 for full details). The Aalborg Bugt study area was covered from 

30 N-S parallel transects flown at 3 km intervals eastwards from the east Jutland coast in the west to 

east of Læsø and Anholt (as shown in Fig. 1b). 

In the German North Sea, aerial surveys were carried out as part of a regular national monitoring 

programme, surveying the waters along 7 roughly N-S parallel transects between the Schleswig-

Holstein coast and the 12 nm zone at least twice per year during summer and winter (Fig. 2b). Transects 

were spaced 3 km apart for the innermost four flight lines closest to the coast, but at 6 km intervals 

between the outer most three transects. The same type of aircraft, altitude and data collection 

protocols were used as for the Aalborg Bugt study area, but see Markones & Garthe (2011) for detailed 

descriptions.  

The same fixed transect design was repeated for each survey in both study areas, ensuring consistent 

coverage of the same overall area for each flight. We here present data from 11 surveys carried out 

intensively in two season in Aalborg Bugt between 12 August 1999 and 23 March 2000 and between 5 

September 2000 and 16 April 2001, as well as data from 26 surveys in the German Bight carried out 

between 22 January 2006 and 6 July 2017. This provided us with detailed within-year data from just 

two seasons from Aalborg Bugt and a more comprehensive long-term database across many years 

from the German Bight. The individual surveys generated between 18,460 and 90,219 bird detections 

in Aalborg Bugt and between 61 and 49,774 in the German Bight survey area. The full list of flight 

details and summary of the raw data are given in Supplementary Material Tables S1 and S2.  
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Distribution maps were generated using ArcGIS (ESRI, Version 10.2.1, 2013 and 10.4.1, 2015). To map 

the distribution patterns in the German North Sea, four aerial surveys from 2011-2014 were chosen 

for each period (July-September, October-November and December-March, for survey dates see 

Supplementary Material Table S2). Due to the limited amount of surveys during October and 

November, two November surveys from 2006 and 2009 were chosen to illustrate the early winter 

period, identified in the caption of Fig. 2.   

2.2 Environmental parameters and analyses 

To test the hypothesis that Common Scoter progressively foraged in deeper water through the season, 

we determined the mean water depth (m) at the point of observation of each scoter flock unit and 

weighted the average for each survey according to the number of individuals recorded at each point. 

The mean water depth (m) was identified by spatially joining each observation to a bathymetry layer. 

In Aalborg Bugt, depth information was received in the form of a multi-beam based ASCII file supplied 

by the Danish Coast Guard, transformed into an ArcGIS TIN (triangular irregular networks) layer. In the 

German North Sea, depth data based on one metre intervals were received in the form of an ArcGIS 

shape file provided by the Federal Maritime and Hydrographic Agency (BSH, Germany, Asprion et al. 

2013). To test the prediction that Common Scoter would disperse into more flock units due to resource 

depletion as the season progresses, we calculated the number of flock units encountered by the 

observers in each flight. To analyse the spatial dispersal of the birds during the course of the season, 

we established a 3 x 3 km polygon grid cell layer for both survey areas to calculate the number of grid 

cells containing Common Scoter observations per survey (628 cells in Aalborg Bugt, 408 in the German 

Bight). We then used the successional occupation (i.e. simple presence/absence in each grid square at 

each survey, expressed as the percentage of occupied grid cells) to see if the Common Scoter spread 

out progressively through the course of the season. Finally, we measured the entropy of their dispersal, 

using the Shannon index (H’, Shannon & Weaver 1964) as a measure of inequality in the distribution 

of Common Scoter. This we expressed as: 

𝐻ᇱ =  − ෍ 𝑝𝑖 ln 𝑝𝑖

ୖ

௜ୀଵ

 

 

where pi represents the proportion of Common Scoter occurring in the ith grid square out of R grid 

cells. We predicted that during moult, when clumped, H’ will be less, but this measure will increase 

with the increasing evenness of the distribution as Common Scoter disperse through the season. All 

numerical data storage, processing and statistical analysis were carried out in Access and Excel 

(Microsoft Office 2016).  



 

 
 

85 

 Large-scale depth-related seasonal dispersal patterns of a benthic-feeding sea duck in two 
contrasting marine systems 

Results 

In Aalborg Bugt, moulting Common Scoter aggregated in large flock units to the south of Læsø (Fig. 1b) 

and in areas off east Jutland and north Djursland (in the western and southern edges of Aalborg Bugt 

respectively). Large numbers of birds remained in these areas throughout the winter. However, they 

increasingly dispersed throughout the area through the winter (Fig. 1c, d), exploiting (based on 

weighted monthly average depths) deeper water through the season (mean 6.3 m in July to 9.8 m in 

March based on actual mean values for these months, Fig. 3a). Common Scoter assorted themselves 

in increasing numbers of flock units (432 in July to 1614 in March, Fig. 3b), dispersed over greater areas 

of sea, being detected in 93 grid cells out of 628 (15%) in July 2000 compared to 275 (44%) in March 

2000 and 243 (39%) in March 2001 (Fig. 3c) resulting in increasingly even dispersal (as measured by 

entropy, Fig. 3d and see Supplementary Material Table S1).  

In the German Bight, moulting Common Scoter mainly aggregated west of the Eiderstedt peninsula 

and Süderoogsand (southern German Bight, Fig. 2b) during July to September. Single flock units of 

moulting birds were also observed west of Amrum (central German Bight, Fig. 2b) and north of Sylt 

(northern German Bight, Fig. 2b). Large flock units remained west of the Eiderstedt peninsula 

throughout the winter (Fig. 2c, d). At the same time, the number of scoter flock units increased in the 

areas west of Sylt (northern German Bight, Fig. 2c, d) and Norderoogsand (central German Bight, Fig. 

2c, d). In general, Common Scoter were located in increasingly deeper waters throughout the season 

(from a mean of 6.5 m solving the regression model for 15 July, to 10.3 solving for 18 March, Fig. 3e). 

As in Aalborg Bugt, the number of flock units increased (from 48 in July to 581 in March, Fig. 3f) and 

they dispersed over greater numbers of grid cells, being detected in four grid cells out of 408 (1%) in 

June 2010 compared to 158 (39%) in February 2014 (Fig. 3g). The dispersal became more even during 

the course of winter (Fig. 3h, see Supplementary Material Table S2), although due to some surveys 

with large numbers of flock units early on during the moulting season, the pattern of dispersal was not 

as even as in Aalborg Bugt. The maximum number of flock units and occupied grid cells were observed 

in the months of January and February (see Supplementary Material Table S2).  
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Fig. 1. Map of Common Scoter Melanitta nigra distribution in Aalborg Bugt, Denmark (showing location and legend (a)), during (b) the flightless moult 

period July-September, (c) the early winter October and November and (d) late winter December-March in the years 1999-2001. Red circles indicate 

discrete groups of birds, the size of which reflects the numbers present (see key for size class intervals). 
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Fig. 2. Map of Common Scoter Melanitta nigra distribution in the German North Sea (showing location and 

legend (a)), during (b) the flightless moult period (surveys: 25 July and 19 August 2012, 16 July 2013 and 1 

August 2014), (c) early winter October-November (surveys: 3 November 2006 and 10 November 2009) and 

(d) late winter December-March (surveys: 2 December 2013, 4 February 2012 and 11 February 2014). Red 

circles indicate flock units counted during the surveys, the size of each red circle reflects the numbers present 

(see key for size class intervals).   
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Fig. 3. Graphs of changes in (a), (e) mean water depth (± SD), (b), (f) number of flock units, (c), (g) number of 

occupied 3x3 km grid squares and (d), (h) entropy of Common Scoter Melanitta nigra from (a)–(d) Aalborg 

Bugt, Denmark and (e)-(h) the German North Sea from the moulting period in July to the end of winter in 

March. For Aalborg Bugt, the data originate from the years 1999-2000. For the German North Sea, the data 

originate from the years 2006-2017. Note log10 transformed y-axis in Figs 3b, 3c, 3f and 3g. See 

Supplementary Materials Table S3 for statistical details of fitted regression models, all of which were 

significant at least at P < 0.05 

Discussion 

The results of generating spatially explicit distributions of Common Scoter from aerial surveys showed very 

similar patterns of dispersal during the course of the year in Aalborg Bugt and the German Bight. Common 

Scoter increasingly used deeper waters, in greater numbers of individual flock units, distributed across 

greater areas and became more evenly dispersed as the season drew on (meeting all of our four predictions), 

despite the major differences in the nature of the two marine habitats investigated. The more brackish, 

relatively sheltered and less tidal Aalborg Bugt represents a very different marine environment to conditions 

in the more saline, exposed and strongly lunar tidal German Bight. Nevertheless, Common Scoters arrived to 

moult in both areas in June to aggregate in the shallowest areas and gradually dispersed into smaller, more 

numerous flock units in deeper water as the season progressed. Assuming that bivalve prey availability was 

reasonably evenly distributed from the start of each season throughout both two study areas, this pattern 

supports the hypothesis that birds distribute themselves to maximise nutritional and energetic intake while 

minimising costs of gaining food at the same time by foraging on the most abundant prey in the shallowest 

water (e.g. MacArthur & Pianka 1966). We consider this is a reasonable assumption, since substrate type and 

conditions are uniform through most of the Aalborg Bugt study area, although regrettably we lack benthos 

sampling from this study area. In the German Bight, an extensive survey has demonstrated that despite major 

differences in abundances and biomass of bivalves the food profitability throughout the core Common Scoter 

feeding areas used for moulting and wintering seems to be equal (Kottsieper et al. submitted 2018b). Hence, 

by exploiting shallowest waters initially, birds minimise energy expenditure, which is likely of particular 

significance during the flightless wing moult when birds are immobile while replacing flight feathers. As more 

birds (especially females and first autumn juveniles) arrive in autumn, we hypothesised that social 

interactions and depletion of prey resources potentially spread birds over larger areas to meet individual 

nutritional and energetic needs. Correspondingly, Common Scoter are most highly dispersed, distributed at 

lowest densities at the very end of winter, just prior to the time when they migrate back to breeding areas. 

Limited evidence from the German Bight study area suggests that Common Scoters are feeding on similar 
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bivalve communities in the same way throughout the period from moult to the end of winter (Kottsieper et 

al. 2018a, 2018b, submitted). The birds merely forage in deeper water depths on similar prey that occur at 

similar densities and of equally favourable food quality (especially the abundant invasive Ensis leei (M. Huber, 

2015), Kottsieper et al. 2018a, 2018b, submitted). This bivalve species has successfully spread throughout 

North Sea coasts since its invasion in the 1970s to the extent it is now abundant along German North Sea 

coasts (Kottsieper et al. 2018a, 2018b, submitted). Dannheim and Ruhmohr (2012) could show that even in 

deeper waters further off the coast, the abundance of E. leei is high, which would ensure sufficient energy 

intake even though energy expenditure increases due to increasing diving depths. It is striking that intensive 

observations within two seasons in Aalborg Bugt and from 26 surveys spread less intensively over 10 seasons 

in German waters, both show the same pattern, namely increasing exploitation of successively deeper water 

at greater dispersal and reduced density. Despite the clarity of the results, we should be extremely prudent 

about interpreting the cause of the observed Common Scoter distribution patterns, given that we have no 

evidence of increasing agonistic interactions or of food depletion to specifically support these two potential 

explanations or their interaction. Hence, the next priority is to find evidence to support the food depletion 

and social spacing hypotheses to try to explain these patterns.  

Although the patterns in the German North Sea (in relation to mean water depth (m), number of flock units 

and Shannon index H’) match those in the Baltic Sea, gathering data from 10 different seasons has inevitably 

introduced more background variance into the basic relationships. During the last 3 years, numbers of 

moulting Common Scoter have been increasing along Schleswig-Holstein coasts, while the number of 

wintering birds remaining in the moulting area have also been steadily growing as well (FTZ unpublished 

data). These patterns have potentially been explained by the increase in the abundance of one benthic prey 

species (E. leei) in the moulting area, the continuous availability of which seems to provide a reliable and high 

quality food source even during the winter (Kottsieper et al. 2018b, submitted). Hence, shifting abundance 

in the prey base of the German Bight might contribute to the potential explanation for some of the noise 

inherent in the relationships shown in Fig. 3.  

It is extremely rare to be able to track the changes in distribution and dispersal of hundreds of thousands of 

marine predatory organisms feeding on their largely sedentary prey through the course of an annual cycle as 

was possible in this study. These results clearly show that Common Scoter sequentially exploit greater areas 

of shallow inshore waters in greater depths of water as the non-breeding period of their annual cycle 

progressed, compared to those to which they first aggregate during the moulting period. While it is clear that 

water depth affects the seasonal distribution of Common Scoters, we lack data to assess the contribution 

from human disturbance to explain these patterns, which is known to affect their distributions at sea and 
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may have particular effects on bird distributions during the flightless moult period (Kaiser et al. 2006, 

Schwemmer et al. 2011). We also have no knowledge of the degree of turnover of individuals, which occurs 

within these aggregations, to interpret individual decision-making about how, when and where to disperse 

within a season. However, the implication from these findings is that in order to fulfil their annual energetic 

and nutritional needs, the Common Scoter using both study areas are required to exploit all the areas in 

which they are found until their departure in spring. If late winter/early spring is a critical period for acquiring 

necessary stores for spring migration and investment in reproduction, the areas occupied by Common Scoter 

at lowest densities dispersed across the greatest areas in the entire winter, may represent equally important 

priorities for site safeguard as areas protected during the moult period and for mid-winter concentrations. 

These findings are therefore also a reminder that the existence of these patterns have implications for nature 

conservation strategies and site-safeguard networks for this species as well, requiring protection of habitats 

at times when birds are most dispersed in their non-breeding distributions, as well as at other, more 

aggregated, times of year.    
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Supplementary material data tables 

Table S1. Summary of the data used for the analysis from 12 aerial surveys of Common Scoter in 

Danish Aalborg Bugt. 

 

 

 

  

Survey date Mean 
depth 
(m.) 

Number of 
flock units 

Total number 
of birds 

Grid cells covered 
(% out of 628) 

Shannon 
index H’ 

25.07.2000 6.76 432 22605 93 (15%) 3.74 
24.08.1999 7.19 449 18460 93 (15%) 3.30 
05.09.2000 7.37 1683 36609 259 (42%) 3.86 
27.10.2000 7.83 2137 90219 250 (40%) 4.11 
11.11.1999 7.61 1643 54649 306 (49%) 3.50 
20.12.2000 9.01 1740 88525 299 (48%) 4.00 
29.12.1999 8.08 1514 73808 447 (71%) 4.38 
17.01.2001 9.10 1902 48701 273 (43%) 3.40 
24.01.2000 9.52 3559 74940 540 (86%) 4.52 
04.03.2001 9.16 2799 34835 243 (39%) 5.00 
23.03.2000 9.79 1614 52708 275 (44%) 3.65 
16.04.2001 

 
10.31 

 
2846 

 
35067 

 
376 (60%) 

 
5.02 
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Table S2. Summary of the data used for the analysis from 26 aerial surveys of Common Scoter in the 

German North Sea. Superscripts identify surveys used in the mapping of birds shown in Fig. 2 as 

follows: 1July-September, 2October-November and 3December- March.  

Survey date Mean 
depth 
(m.) 

Number 
of flock 

units 

Total 
number of 

birds 

Grid cells 
covered 

(% out of 
408) 

Shannon 
index H’ 

22.01.2006 9.09 291 10896 74 (18%) 2.62 
28.02.2006 8.21 270 7273 64 (16%) 2.29 
03.11.20062 6.66 319 3133 85 (21%) 3.34 
14.02.2009 10.58 926 16806 128 (31%) 4.00 
10.11.20092 11.15 525 12118 121 (30%) 3.92 
07.02.2010 11.14 256 4805 74 (18%) 2.97 
21.06.2010 3.40 9 554 4 (1%) 0.65 
04.02.20123 12.14 248 3861 84 (21%) 3.27 
19.06.2012 7.20 12 2215 9 (2%) 1.49 
25.07.20121 7.65 29 762 14 (3%) 1.34 
19.08.20121 8.92 35 295 14 (3%) 1.97 
17.06.2013 6.50 59 32965 36 (9%) 2.52 
16.07.20131 4.82 50 6420 25 (6%) 2.09 
02.12.20133 8.21 734 13879 137 (34%) 3.76 
11.02.20143 12.04 756 15928 158 (39%) 3.82 
27.06.2014 6.81 74 5830 28 (7%) 1.79 
01.08.20141 3.78 59 3223 25 (6%) 1.22 
12.02.2015 6.07 509 49774 136 (33%) 3.45 
18.03.2015 8.83 176 18225 73 (18%) 2.49 
12.06.2015 5.72 53 43842 29 (7%) 2.52 
28.09.2015 7.09 547 25313 116 (28%) 3.06 
28.02.2016 6.18 343 45150 89 (22%) 2.81 
07.09.2016 7.86 523 3600 101 (25%) 3.83 
17.01.2017 10.65 1562 29478 142 (35%) 3.78 
18.06.2017 5.68 49 24165 18 (4%) 1.99 
06.07.2017 
 

5.11 
 

64 
 

6464 
 

37 (9%) 
 

2.71 
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Table S3. Summary statistics for fitted regression models shown in Figure 3. 

Aalborg Bugt 
 

Coefficient 
 

r2 
 

F 
 

P 
 

Depth* -0.01275 0.91 102.8 <0.0001 
Log10 transformed number of flocks 0.0025 0.56 12.8 0.005 
Log10 transformed occupied grid squares 0.0018 0.47 8.7 0.014 
Entropy 
 

0.0040 
 

0.34 
 

5.13 
 

0.047 
 

German Bight 
     
Depth* -0.01494 0.41 20.9 <0.0001 
Log10 transformed number of flocks 0.0044 0.51 31.4 <0.0001 
Log10 transformed occupied grid squares 0.0030 0.44 23.4 <0.0001 
Entropy 
 

0.0053 
 

0.31 
 

13.5 
 

0.0009 
 

*weighted mean monthly depths were used in this regression model to track changes in this mean 

property with date, not the cumulative individual depth determinations. Regression models were 

solved for 12 June and 18 March to generate the values used in the Abstract and Results sections for 

German Bight. 
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Abstract 

Modelling species abundance patterns in relation to environmental parameters is helpful in 

understanding factors influencing their distribution. The Common Scoter Melanitta nigra (Linneaus, 

1758) is an arctic/sub-arctic breeding sea duck, which abundantly occurs in the eastern German Bight 

during its moulting and wintering season. However, factors driving the distribution of this species 

remain poorly understood. To determine possible influences, we modelled Common Scoter 

distribution during the moulting and wintering seasons using count data from Seabirds at Sea (SAS) 

surveys, benthos and sediment samples collected in the eastern German Bight and selected 

environmental parameters. These included hydrodynamics, fine sand proportion, distance to coast and 

ship traffic as a measure of disturbance and bivalve abundance and ash-free-dry mass as measures of 

available biomass. We applied Zero-inflated Poisson Generalised Additive Models (ZIP GAMs) using 

Integrated Nested Laplace Approximation (INLA) to model bird densities. The best wintering season 

model explained 25.12 % of the deviance, whereas the best model for the moulting season explained 

only 6.53 %. Model results showed that Common Scoters were most likely encountered in shallow 

waters, at moderate bed shear stress values and in areas with high proportions of fine sand (around 

60%), staying closer to shore during moult (distances of 2-3 and  7-8 km) than in winter (distance of  7-

11 km). While a previous study conducted on a small spatial scale found strong relationships between 

predictors and scoter distribution, we could not detect similar strong results. Our study highlights the 

importance of sufficient data at similar spatial scales across covariates, particularly for abundance and 

biomass of bivalve species, which were difficult to interpret in most models.   
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Introduction 

Gathering knowledge on species habitat selection is not only important to understand their ecology, it 

also provides necessary information to support effective conservation measures and develop 

protection strategies. Modelling a species relative abundance in relation to environmental parameters 

has proven useful in estimating or predicting spatial occurrence probabilities, although not without its 

challenges (e.g. Segurado and Araújo 2004, Hernandez et al. 2006, Wisz et al. 2008). While information 

about several environmental parameters can be sampled using different methods, covering the 

entirety of ecological information required to model the distribution of a species remains a challenge, 

especially in relation to seasonal and annual variability (Austin 2002, 2005, Lambert et al. 2017). 

The European North and Baltic Sea coasts provide important habitats for a variety of waterbird species, 

which use these areas for moulting or wintering (Mendel et al. 2008). One such species is the Common 

Scoter Melanitta nigra (Linnaeus, 1758) (e.g. Glutz von Blotzheim and Bauer 1990, Sonntag et al. 2004), 

a marine diving sea duck feeding predominantly on benthic bivalve prey (Madsen 1954, Fox 2004). The 

German North and Baltic Sea are of international importance for Common Scoters, as these waters 

regularly support more than 1% of the estimated flyway population during both the moulting and 

wintering season (Mendel et al. 2008). Long-term aircraft and ship based Seabirds at Sea surveys 

confirmed the consistent use of these areas by Common Scoter for more than 20 years (e.g. Hennig 

and Hälterlein 2000, Hennig and Eskildsen 2001, Markones and Garthe 2011). 

Moulting and wintering seasons represent two different stages in the annual cycle of the Common 

Scoter. During moult, birds annually replace worn flight feathers and are temporarily flightless (Fox et 

al. 2008). During winter, they need to survive short day length and high thermoregulatory costs, after 

which they need to restore energy reserves (e.g. by building up fat depots) to migrate back to breeding 

areas. Consequently, we would assume that habitat selection during both periods is influenced by 

environmental parameters affecting the feeding profitability of Common Scoters (i.e. the energetic 

and nutritional profitability of foraging in an area balanced against the costs of being there). Since the 

German North and Baltic Sea seem to reliably and continuously support high numbers of moulting and 

wintering Common Scoter, we would assume that these areas provide reliable resources of their prey. 

As Common Scoters dive to access their benthic prey, water depth is another factor likely influencing 

habitat selection.  

The distribution of bivalve species is influenced by environmental parameters as well, for example by 

sediment characteristics and hydrodynamics. Therefore, these also likely (indirectly) influence Scoter 

distribution. Limecola balthica (Linnaeus, 1758), Mya arenaria (Linnaeus, 1758), Spisula subtruncata 

(da Costa, 1778) and more recently Ensis leei (M. Huber, 2015) have been reported as main bivalve 

prey items amongst others (Fox 2004, Schwemmer et al. 2019, Kottsieper et al. 2019) and all these 
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species are common in sandy substrates. Moreover, hydrodynamic features such as bed shear stress, 

which is a measurement of sediment transport (the force per unit area transporting sediment 

downstream), affect bivalve settlement (Gray and Elliot 2009). Areas with high bed shear stress values 

represent harsher environments for bivalves as high bed shear forces complicate settlement of larvae 

or juveniles (Gray and Elliot 2009). However, these areas can be favourable for filter feeding bivalves 

due to their higher transport rates of food items and nutrients as well as ensuring higher removal rates 

of excretions (Gray and Elliot 2009).  

Previous studies have already shown that Common Scoters prefer shallow waters as this reduces the 

time and energy needed to dive down through the water column to forage (Madsen 1954, Deppe 2003, 

Fox 2004) and that their distribution is likely influenced by the distribution of their prey (Kaiser et al. 

2006). In a more recent study, Schwemmer et al. (2019) modelled the distribution of Common Scoter 

in relation to Ensis leei, which was shown to be their major prey item, and hydrodynamic features in a 

small scale approach along the North Frisian Islands in the German Wadden Sea. They could show that 

the occurrence of E. leei best explained the dispersal of Common Scoters in this area alongside negative 

effects of water depth and positive effects of bed shear stress intensity. The predictors selected for 

their modelling approach proved to be well suitable. However, this study was conducted at a relatively 

small spatial scale. 

The study of Schwemmer et al. (2019) served as a basis for our own work, which was aiming at 

extrapolating the previous results to a larger sea area and different seasons enabling more generalised 

results. We again incorporated abundances and biomass of E. leei (and other bivalve prey) as well as 

hydrodynamic features. Additionally, we added another predictor by incorporating ship traffic as a 

measure of disturbance into our approach as Common Scoters have been shown to strongly react to 

ship abundance (Kaiser et al. 2006, Schwemmer et al. 2011, Fliessbach et al. 2019). The shallow waters 

along the German North (and Baltic) Sea coast are subject to recreational activities especially during 

summer and fishing activities throughout the entire year, whereas the areas in deeper waters are 

utilised for ship traffic year round. Evading the potential threats posed by vessels increases energy 

expenditure through escape behaviour, displaces birds from optimal feeding areas and reduces the 

time and energy available for foraging, ultimately affecting body condition (e.g. Kight and Swaddle 

2007, Riddington et al. 2010, Robinson and Pollitt 2010). Consequently, we would expect that patterns 

of human maritime activity also influence the distribution of Common Scoters particularly during the 

moulting season, when birds are flightless. Furthermore, we wanted to include the differences in 

distribution of Common Scoters between moulting and wintering season and therefore set up separate 

models for both periods.  
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In this study, we used Common Scoter count data obtained by ship and aircraft based Seabirds at Sea 

surveys to model the spatial and temporal distribution of the Common Scoter in response to a number 

of selected environmental parameters. As we wanted to model the distribution on a large spatial scale, 

we focused on the areas of the eastern German North Sea coast, from which a detailed count data 

base of regularly performed surveys was available. Since this count data is characterised by zero-

inflation, spatial correlation and large variation in abundance, we used Bayesian computing with 

Integrated Nested Laplace Approximation (INLA). Previous studies have already shown that this 

approach is highly suitable for such count data characteristics (e.g. Rue et al. 2016, Sadykova et al. 

2017, Bakka et al. 2018). As environmental parameters, we selected water depth (m), distance to coast 

(km), biomass (g m-2) and abundance (individuals m-2) of benthic bivalve species, proportion of fine 

sand (%), bed shear stress (N m-2) and ship traffic (number of ships km-2). Based on this approach, we 

raised the following hypotheses:  

 (i) Common Scoter distribution will mainly be influenced by water depth and 

biomass/abundance of benthic bivalve species.  

 (ii) Highest numbers of Common Scoters will be found in areas with lowest ship traffic.  

 (iii) Distance to coast, proportion of fine sand and bed shear stress will contribute to explaining 

Common Scoter distribution, but are expected to have lesser influence.  

 (iv) During moult, ship traffic has a greater impact on Common Scoter distribution than prey 

availability.  

 

Material and Methods 

All statistical analyses were performed with R (R Core Team, 2017). All maps were produced with 

ArcGIS (ESRI, Version 10.2.1, 2013).  

2.1 Study area  

The study area covered about 4500 km2 along the eastern German North Sea coast extending from the 

Elbe river in the south to the northern part of the island Sylt (Fig. 1). It included tidal mud flats close to 

the coast, as well as intertidal and subtidal areas further offshore. Water depths ranged from 0 to -30 

m. The study area is known to provide important habitats for moulting and wintering Common Scoters 

(e.g. Nehls 1998, Mendel et al. 2008, Markones and Garthe 2011, Spalke et al. 2013). Although 

Common Scoter are not located on intertidal mudflats, we sampled both intertidal and subtidal areas 

to set up a valid prediction model of prey abundance throughout the entire area.  
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Fig. 1 Study area in the eastern German North Sea with (a) overview map and legend, (b) all sampling 

stations, (c) survey effort during the moulting season and (d) survey effort during the wintering season. 

Survey effort is shown across the entire prediction grid. 

2.2 Seabirds at Sea surveys 

Common Scoter distribution data was taken from ship and aerial based Seabird at Sea surveys regularly 

conducted by the Research and Technology Centre on behalf of the Schleswig-Holstein Agency for 

Coastal Defence, National Park and Marine Conservation – National Park Authority or parallel to the 

sampling cruises. In this study, we focused on the moulting and wintering distribution and thus only 

included survey data from June to September (moult) and December to February (winter). Due to gaps 
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in the survey data (either caused by bad weather conditions or unavailability of ship/aircraft) data from 

2015-2017 was combined. SAS surveys were performed following internationally standardised 

methods (Camphuysen and Garthe 2004) based on line transects with distance sampling (Buckland et 

al. 2015). Aerial surveys had either nearly N-S transects parallel to the Schleswig-Holstein coast or 

nearly E-W transects during flights covering areas offshore across the 12 nautical mile zone (Fig. 1 c, 

d). Aerial surveys were conducted with a high-winged twin-engine Partenavia P-68 with bubble 

windows flying at 76 m with a speed of 185 km/h. Birds were counted within 388 m wide transects 

parallel to the flight track. During ship based surveys, birds were counted within a 300 m wide transect 

parallel to the keel line of the research vessel. Bird observations were spatially joined in ArcGis with a 

1x1 km prediction grid covering the entire study area to calculate the number of individuals per grid 

cell (see 2.5).  

2.3 Biotic environmental variables 

1,405 benthos samples were collected in the intertidal and subtidal zone along the coast of Schleswig-

Holstein between October 2012 and February 2018 (Fig. 1b). Intertidal samples were collected with a 

corer (sampling an area of 93.3 cm-² to a depth of 20 cm). Subtidal samples were taken using a Van 

Veen grab (sampling an area of 1000 cm2 to a depth of about 20 cm). Three replicates were taken at 

each sampling station, sieved through a 2 mm mesh and derived specimen were stored in zip lock bags 

and frozen at -20°C or stored in jars filled with 75% ethanol.  

Since Common Scoters are bivalve benthic feeding sea ducks (Madsen 1954, Fox 2004), this study 

focused on analysing bivalves. All other benthic species were identified as well, but were not included 

in our analysis. All specimens were identified to species level and counted. Bivalves were measured 

with callipers to the nearest 0.1 mm (length, width and height). As a measure of biomass, individual 

ash-free dry weight was determined based on the loss on ignition method (Kramer et al., 1992). All 

specimens were dried in porcelain crucibles at 50°C for 24 hours and weighed. To determine ash 

content, dried flesh fractions were combusted in a muffle furnace at 560°C for 12 hours and 

subsequently weighed. Benthic species abundance data was standardised to m-2 and ash free dry 

weight data was standardised to g/m-2. As three replicates were taken per sampling station, mean 

bivalve abundances and ash-free dry weights were calculated per sampling station and used for the 

habitat models. For biomass and abundance data per species, we focused on bivalve species, which 

are preferred prey items of Common Scoters (Fox 2004, Kottsieper et al. 2019, Schwemmer et al. 2019) 

and thus selected Ensis leei (M. Huber, 2015), Limecola balthica (Linneaus, 1758) and Fabulina fabula 

(Gmelin, 1791). For data across species, all other bivalve species collected were included. To visualise 

distribution and abundances of benthic species, their abundances and biomasses were spatially joined 

with a 1x1 km grid in ArcGIS and the mean abundance and biomass were calculated per grid cell.  
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2.4 Abiotic environmental variables 

To analyse the influence of abiotic environmental variables on the distribution of Common Scoters, we 

selected proportion of fine sand (%), water depth (m), distance to coast (km), bed shear stress (N/m-2) 

and ship traffic. Water depth data based on one metre intervals was taken from an ArcGIS shape file 

provided by the Federal Maritime and Hydrographic Agency (BSH, Germany, see also Asprion et al. 

2013). Distance to coast was computed in the GIS using a map of the coastal zone provided by the 

national park administration of Schleswig-Holstein (NPV Schleswig-Holsteinisches Wattenmeer). Bed 

shear stress data was calculated based on a numerical model by Kösters and Winter (2014). Ship traffic 

data was taken from Seabirds at Sea survey data (FTZ). During aircraft and ship based counts, ships 

were listed including information on type (cargo, fishery, recreational etc), direction of travel and 

distance to the observation vessel.   

To determine the proportion of fine sand, sediment samples were collected together with benthos 

samples taken from the first replicate, stored in zip lock bags and frozen at -20°C. Samples were dried 

at 100°C for 6-8 hours, weighed and treated with a 10% hydrogen peroxide (H2O2) solution for 12-24 

hours to oxidize all organic constituents. Subsequently, samples were rinsed with freshwater through 

a 63 µm mesh until the water was clear, dried at 100 °C for another 6-8 hours and weighed. Grain size 

distribution was analysed by sieving samples in ¼ Phi fractions with mesh sizes ranging from 63 µm to 

2 mm and weighing each fraction (modified in accordance with Buchanan, 1984). Based on this sieving 

cascade, the amount of fine sand (%) was calculated for each sample.  

2.5 Prediction grid 

To model the distribution of Common Scoter in relation to the selected environmental parameters, a 

prediction grid with 1 x 1 km cells was created in ArcGIS (Fig. 1 c, d). To cover the entire area along the 

Schleswig-Holstein coast and thus model the distribution on a larger spatial scale, the prediction grid 

was expanded beyond the sampling area, covering about 8300 km-2. All environmental parameters as 

well as the distribution data were spatially joined with the prediction grid subsequently to assign a 

value of each variable and bird observation to every grid cell. Since the selected environmental 

variables were available in different spatial resolutions, they needed to be adjusted to the size of the 

prediction grid. Therefore, the average water depth was calculated for each grid cell. In case of bed 

shear stress, the value closest to a grid cell was used. Common Scoter observations and ships counted 

were summed per grid cell. Common Scoter abundances were corrected by survey effort. In the 

statistical model, the uncorrected bird observations were used, but survey effort was included as an 

offset.   

Benthos and sediment data were either collected based on a 5x5 km grid or random (stratified) 

sampling. To obtain values for all cells, missing sediment data as well as ash free dry weight and 
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abundance data were fitted to the grid in R with a generalised additive model (GAM) using the mgcv 

package (Wood, 2011). Subsequently, missing values were supplemented via the predict function 

(mgcv package, Wood, 2011). Bed shear stress data had a resolution of 1x1 km close to the coast, but 

was more fragmentary further offshore. To cover the prediction grid and obtain values for all missing 

cells, the same procedure of fitting and predicting values was used.  

2.6 Common Scoter habitat model 

All predictor variables were tested for collinearity visually using the lattice package (Sarkar 2008) and 

by performing a variance inflation factor analysis (VIF, usdm package, Naimi et al. 2014). If 

autocorrelation was detected, affected variables were excluded from further analysis. Common Scoter 

distribution was modelled as a function of the before mentioned selected environmental parameters 

(from here on referred to as covariates). Due to the structure of the response variable (Common Scoter 

observations with overdispersion and a large number of zeros), we modelled the distribution with a 

zero-inflated Poisson generalised additive model (ZIP GAM) using Integrated Nested Laplace 

Approximation (INLA package, Rue et al. 2009). Latitude was included as a random interaction term to 

account for spatial autocorrelation (Latimer et al. 2006). Since Common Scoter count data included 

three survey years, Year was included as a categorical variable. Abundance and biomass values of the 

selected bivalve species as well as for the overall benthos were log-transformed to simulate a normal 

distribution and account for potential outliers. The same applied for the number of counted Common 

Scoter. All continuous covariates were standardised to avoid numerical estimation problems. The 

survey effort (distance travelled either by aircraft or ship) was included as an offset. Based on this 

procedure, the following formulas were defined for (1) the moulting and (2) the wintering data:  

(1) log(Scoteri) = Depthi + Fine sandI + BSSi + Distancei + log(AbuI) + log(BioI) +Shipsi + Yeari + 

f(Latitude) + offset(log(Efforti))  

(2) log(Scoteri) = Depthi + Fine sand I + BSSi + Distancei + log(AbuI) + log(BioI) +Shipsi + Yeari + 

f(Latitude) + offset(log(Efforti))  

where Scoteri is the number of Common Scoter, Fine sandI is the proportion of fine sand, BSSi is bed 

shear stress and Distancei is the distance to the coast. Four separate models with the selected benthic 

bivalve species were performed for each season with Abu and Bio representing abundances and 

biomasses of E. leei, F. fabula, L. balthica and all benthic bivalve species. Shipsi is the number of 

observed ships. Yeari is a categorical variable, f(Latitude) is the random interaction term and the survey 

effort was included as offset(log(Efforti)). All values were calculated for every (ith) observation. We 

validated the models by inspecting residual plots and checking for linearity, homogeneity and 

independence (Zuur et al. 2010). The degrees of freedom (number of knots k) for GAM smoothers of 



 

 
 

108 

 Modelling the distribution of the Common Scoter Melanitta nigra in relation to environmental 
parameters in the eastern German North Sea 

each covariate were set to k=6 to attain a stronger smooth of model curves and thus allow a better 

interpretation of potential relationships between covariates and response variable.  

 

Results  

3.1  Common Scoter distribution 

During the moulting season in 2015-2017, the majority of individuals was located west of Amrum and 

Norder-/Süderoogsand in the central eastern German Bight (Fig. 2 a). High abundances were also 

found west of the Eiderstedt peninsula. Most birds stayed close to the coast with water depths of ≤ 

5m. Only a small number of Common Scoter was found in deeper waters or further offshore. During 

winter 2015-2017, the majority of Common Scoter was located west of the Eiderstedt peninsula (Fig. 

2b). High numbers of birds were also found west of Norder-/Süderoogsand. These individuals were still 

located close to the coast. Compared to the moulting season, more birds were observed further 

offshore within water depths of up to 10 m. Additionally, Common Scoter dispersed more during 

winter compared to the moulting season when individuals were found mainly aggregated.  

 

Fig. 2 Distribution of the Common Scoter in the eastern German Bight during (a) the moulting and (b) 

the wintering season. For clarity, distribution data was summed in a 5x5 km grid. Abundances of 

Common Scoters are represented as number of individuals per grid cell.  
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3.2 Bivalve abundances and ash-free-dry mass 

Overall, 9,794.41 bivalve individuals were found in the study area. 63.48 % of these were E. leei 

specimen, 0.69 % F. fabula individuals and 6.93 % L. balthica specimen (Table 1). The highest 

abundances across all bivalves were found west of the Eiderstedt peninsula (Fig. 3 a). Additionally, high 

bivalve abundances across species were observed in the central eastern German Bight around the 

North Frisian Islands in shallow waters and intertidal areas. The lowest abundances were found west 

of Sylt. The maximum of E. leei individuals was located west of the Eiderstedt peninsula and a few 

locations with higher abundances were observed further offshore in the south-eastern study area (Fig. 

3 b). Lowest abundances were observed west of Sylt. Highest numbers of F. fabula individuals found 

were located west of Sylt and further offshore west of the North Frisian Islands, whereas low 

abundances were observed in the remaining study area (Fig. 3 c). In case of L. balthica, highest numbers 

were found west of the Eiderstedt peninsula (Fig. 3 d). Additionally, high abundances were located 

north of the Elbe estuary, as well as among the North Frisian Islands in the central eastern German 

Bight.  

In terms of ash-free-dry mass, a total of 12.79 g/m-2 was calculated across all bivalve species. Of this 

overall ash-free-dry mass, 43.42 % were contributed by E. leei, 0.37 % by F. fabula and 11.85 % by L. 

balthica (Table 1). The maximum ash-free-dry mass across all bivalves as well as of E. leei was found 

west of the Eiderstedt peninsula. The highest ash-free-dry mass of F. fabula was found west of Sylt and 

the maximum of L. balthica west of Norderoogsand in the central eastern German Bight.  

Table 1 Abundance (given as individuals/m-2) and ash-free-dry mass (AFDM, given as g/m-2) of the 

benthic bivalve species collected in the study area. The values of E. leei, F. fabula and L. balthica as 

well as all other species combined are given.  

 Abundance (ind./m2) Proportion (%) AFDM (g/m2) Proportion (%) 

E. leei 6217.56 63.48 75.02 43.42 
F. fabula 67.2 0.69 0.64 0.37 
L. balthica 678.96 6.93 20.48 11.85 
Other species 2830.69 28.90 76.65 44.36 
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Fig. 3 Abundances of (a) all benthic bivalves, (b) Ensis leei, (c) Fabulina fabula and (d) Limecola balthica 

individuals found in the study area.  
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3.3 Common Scoter habitat model  

Moulting season 

Based on the overall deviance explained by each model for the moulting season, the selected 

covariates were only able to explain a small fraction of Common Scoter distribution (Table 2 a). The 

model including all benthic bivalve species was the best fitting, explaining 6.53 % of the deviance. In 

all models performed for the moulting season, water depth, distance to coast, proportion of fine sand 

and bed shear stress affected Common Scoter distribution significantly (Table 3 a). Bivalve abundance 

had significant effects on Common Scoter distribution in all four models, whereas biomass showed 

significant effects in all except for the E. leei model.  Ship traffic did not have significant impacts on 

Common Scoter distribution (Table 3 a). 

Based on the smoothing functions, the probability to encounter Common Scoters was highest in areas 

with moderate bed shear stress values and within distances of 2-3 and around 7-8 km to the coast in 

all four models (see Appendix Fig. 1). The proportion of fine sand showed statistical relationships with 

scoter distribution in all models with an optimum of ca. 60 %. The models revealed a relationship 

between scoter distribution and E. leei biomass (Fig. 4 II), as well as F. fabula abundance (Fig. 4 III). The 

results for L. balthica and the model including all bivalves were difficult to interpret (Fig. 4 I+IV).  While 

the models did not show significant relationships between Scoter distribution and ship traffic, the 

smoothing functions suggest that they are most likely encountered with either less than 2 (all benthos 

model) or no ships present in the study area (E. leei, F. fabula and L. balthica model). Smoothing 

functions for latitude, water depth, fine sand, bed shear stress and distance to coast were similar 

among all four models, there graphs are shown in the appendix (Appendix Fig. 1-4). 

Wintering season 

The overall deviance explained was higher for all four wintering season models compared to those of 

the moulting season (Table 2 b). The model with L. balthica data was the best fitting, explaining 25.12 

% of the deviance. Water depth, distance to coast, proportion of fine sand and bed shear stress 

significantly affected the distribution of Common Scoters during the wintering season in all models 

(Table 3 b). In case of the all benthos and L. balthica model, both abundance and biomass had 

significant impacts. No significant effects of abundance were found for the E. leei model. Ship traffic 

did not have significant impacts on Common Scoter distribution (Table 3 b). 

The smoothing functions showed that Common Scoters are most likely encountered in areas with fine 

sand proportions of ca. 70 %, at moderate bed shear stress values and within distances of 7-11 km to 

the coast. The model F. fabula model revealed a relationship between scoter distribution and biomass 

(Fig. 5 III). The results for E. leei, the L. balthica and the model including all bivalves were difficult to 

interpret (Fig. 5 I+IV). While the models did not show significant relationships between Scoter 
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distribution and ship traffic, the smoothing functions suggest that they are most likely encountered 

with a maximum of 10 ships present in all four models. However, this probability increases in all except 

the L. balthica models with more than ca. 11 ships present. Smoothing functions for latitude, water 

depth, fine sand, bed shear stress and distance to coast were similar among all four models, there 

graphs are shown in the appendix (Appendix Fig. 5-8). 

 

Table 2 Results of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with Integrated 

Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the moulting and 

wintering season. Modelling results with the overall deviance explained and the deviance information 

criterion (DIC) of the best fitting model are given for (a) the moulting and (b) the wintering seasons. 

The mean ± standard deviation (SD) and the 25 % and 97,5 % quantiles are listed as well. As models 

were distinguished by the selected benthos variable, they have been named accordingly.  

a  Dev. Expl. (%) DIC Mean ± SD 0.025 Q 0.975 Q 

All benthos 6.53 9976.68 0.76 ± 0.008 0.74 0.77 

E. leei 5.89 9472.78 0.76 ± 0.008 0.74 0.77 

F. fabula 5.22 9802.67 0.76 ± 0.008 0.74 0.77 

L. balthica 5.16 9616.69 0.76 ± 0.008 0.74 0.77 

      

b  Dev. Expl. (%) DIC Mean ± SD 0.025 Q 0.975 Q 

All benthos 19.75 7348.00 0.62 ± 0.011 0.60 0.64 

E. leei 15.40 7280.29 0.62 ± 0.011 0.59 0.64 

F. fabula 15.12 7397.69 0.62 ± 0.011 0.60 0.64 

L. balthica 25.12 7248.07 0.63 ± 0.011 0.60 0.64 

Dev. Expl. Deviance explained · DIC Deviance Information Criterion · SD Standard deviation · Q Quantile  
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Table 3 Pearson residuals of each parameter in each model for (a) the moulting and (b) the wintering 

season. Deviance explained in %, adjusted R2 and P-value are given for each parameter. As models 

were distinguished by the selected benthos variable, they have been named accordingly. The 

parameter with the highest explained deviance is given in bold. Statistical significance codes: <0.001 

‘***’ 0.001 ‘**’ 0.01 ‘*’ 

Adj adjusted · Dev. Expl. Deviance explained  

 
a 

MOULT 
b 

WINTER 

 Parameter Dev. Expl. (%) R2 adj.  P   Parameter Dev. Expl. (%) R2 adj.  P   

A
ll 

be
nt

ho
s  

 Latitude 0.32 0.00 0.039 *  Latitude 1.55 0.013 <0.001 ***  

Depth 1.00 0.008 <0.001 ***  Depth 2.76 0.025 <0.001 ***  

Fine Sand 0.89 0.007 0.001 **  Fine Sand 3.12 0.027 <0.001 ***  

BSS 1.12 0.009 <0.001 ***  BSS 2.93 0.025 <0.001 ***  

Distance 1.12 0.009 <0.001 ***  Distance 4.37 0.039 <0.001 ***  

Abundance 1.47 0.012 <0.001 ***  Abundance 1.79 0.014 <0.001 ***  

Biomass 0.59 0.005 0.005 **  Biomass 3.06 0.028 <0.001 ***  

Ship traffic <0.001 <-0.001 0.895   Ship traffic 0.17 <0.001 0.4  

E.
 le

ei
 

 Latitude 0.34 0.002 0.038 *  Latitude 1.44 0.012 <0.001 ***  

Depth 1.14 0.009 <0.001 ***  Depth 2.72 0.025 <0.001 ***  

Fine Sand 0.72 0.005 0.01 **  Fine Sand 2.90 0.025 <0.001 ***  

BSS 1.34 0.011 <0.001 ***  BSS 2.96 0.026 <0.001 ***  

Distance 1.24 0.011 <0.001 ***  Distance 4.38 0.039 <0.001 ***  

Abundance 1.09 0.008 <0.001 ***  Abundance 0.61 0.004 0.112   

Biomass 0.01 <-0.001 0.509   Biomass 1.94 0.017 <0.001 ***  

Ship traffic <0.001 <-0.001 0.939   Ship traffic 0.19 <0.001 0.351  

F.
 fa

bu
la

 

 Latitude 0.29 0.002 0.07   Latitude 1.32 0.011 <0.001 ***  

Depth 1.01 0.008 <0.001 ***  Depth 2.86 0.026 <0.001 ***  

Fine Sand 0.17 0.001 0.017 *  Fine Sand 2.69 0.022 <0.001 ***  

BSS 1.15 0.009 <0.001 ***  BSS 2.57 0.022 <0.001 ***  

Distance 1.06 0.009 <0.001 ***  Distance 4.13 0.037 <0.001 ***  
Abundance 0.89 0.007 <0.001 ***  Abundance Excluded due to autocorrelation  
Biomass 0.65 0.005 0.001 **  Biomass 1.29 0.011 <0.001 ***  

Ship traffic <0.001 <-0.001 0.965   Ship traffic 0.26 0.001 0.248  

L.
 b

al
th

ic
a  

 Latitude 0.28 0.002 0.076   Latitude 1.79 0.014 <0.001 ***  

Depth 1.05 0.009 <0.001 ***  Depth 2.60 0.023 <0.001 ***  

Fine Sand 0.42 0.004 0.022 *  Fine Sand 3.12 0.027 <0.001 ***  

BSS 1.13 0.009 <0.001 ***  BSS 3.86 0.035 <0.001 ***  

Distance 1.19 0.010 <0.001 ***  Distance 4.6 0.042 <0.001 ***  

Abundance 0.47 0.004 0.003 **  Abundance 2.97 0.026 <0.001 ***  

Biomass 0.62 0.005 <0.001 ***  Biomass 5.99 0.056 <0.001 ***  

Ship traffic <0.001 <-0.001 0.957   Ship traffic 0.19 <0.001 0.363  
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Fig. 4 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with Integrated Nested Laplace Approximation (INLA) for the 

distribution of Common Scoter during the moulting season. Based on the selection of benthos data, smoothing functions are shown for I all bivalve benthos 

species, II E. leei, III F. fabula and IV L. balthica models. Graphs are shown for Common Scoter abundance modelled in relation to (a) abundance, (b) biomass 

and (c) ship traffic. The deviance explained (%), adjusted R2 and P-value of the Pearson residuals are given for each covariate. The dashed black middle line 

represents the smooth function estimate. 95 % confidence intervals are given in grey.  Note that the y-axes of abundance and biomass values were log-

transformed. Abu Abundance · Ben Benthos · Bio Biomass · El Ensis leei · Ff Fabulina fabula · Lb Limecola balthica.  
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Fig. 5 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with Integrated Nested Laplace Approximation (INLA) for the 

distribution of Common Scoter during the wintering season. Based on the selection of benthos data, smoothing functions are shown for I all bivalve benthos 

species, II E. leei, and IV L. balthica models. Graphs are shown for Common Scoter abundance modelled in relation to (a) abundance, (b) biomass and (c) ship 

traffic. Graph III shows the results for F. fabula with (a) biomass and (b) ship traffic, as abundance had to be excluded from the analysis due to autocorrelation. 

The deviance explained (%), adjusted R2 and P-value of the Pearson residuals are given for each covariate. The dashed black middle line represents the smooth 

function estimate. 95 % confidence intervals are given in grey.  Note that the y-axes of abundance and biomass values were log-transformed. Abu Abundance · 

Ben Benthos · Bio Biomass · El Ensis leei · Ff Fabulina fabula · Lb Limecola balthica.
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Discussion 

Based on the four hypothesis stated in the introduction, the result of our study confirmed some, but 

not all of our assumptions.  

Water depth, bed shear stress and fine sand 

The modelling results showed that the most influential parameters during the moulting and wintering 

season were water depth, proportion of fine sand and bed shear stress. All three covariates 

significantly affected Common Scoter distribution in all models during both seasons. Previous studies 

have stated that water depth is potentially one of the most influential parameters impacting Common 

Scoter distribution (e.g. Deppe 2003, Schwemmer et al. 2019). During moult, birds replace worn flight 

feathers, thus being flightless and in particular need of balancing the ratio of energy spent to forage 

and the energy gained from prey resources. Shallow waters reduce the amount of time spent and 

energy needed to dive through the water column and obtain prey. During winter, scoters likely have 

to move to deeper waters as the season progresses since prey resources might have been depleted 

(Guillemette et al. 1996). Our findings support these assumptions.  

The bivalve species Common Scoter prefer as prey items are predominately found in sandy substrates 

(Fox 2004). This relates to our findings showing that Common Scoter are most likely localised above 

sediments with high proportions of fine sand as bivalves are easier to detect (by bill-probing) and 

remove from sandy compared to harder, muddy or consolidated substrates. Areas with moderate bed 

shear stress are characterised by medium current strength. In general, water currents are responsible 

for the transport of prey (i.e. phyto- and zooplankton) upon which filtering feeding bivalves rely (Gray 

and Elliot 2009). Strong currents would complicate bivalve settlement, mobilise substrates and 

transport organic and inorganic material too quickly, reducing the attractiveness to sedentary bivalve 

species. If currents were too low on the other hand, supply of sufficient energy resources may 

jeopardise survival, reducing bivalve abundance (Reise 2012). Consequently, areas with moderate bed 

shear stress are likely optimal habitats for several bivalve species and thus provide profitable foraging 

areas for Common Scoter.  

Distance to coast 

The results of all models for both seasons revealed a significant relationship between the probability 

of encountering Common Scoter and the distance to the coast. As previously mentioned, Scoters tend 

to aggregate close to the coast in shallow waters during moult, whereas they spread over larger areas 

and thus further away from the coastline during winter. Common Scoters are flightless during moult 

and therefore rely on profitable prey resources in shallower waters. They tend to aggregate in these 

areas in high densities. As prey resources might therefore be depleted during the season, birds are 

likely forced to spread over wider areas and into deeper waters as the winter progresses. Thus, they 
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are located in greater distances to the coast. Consequently, this should be reflected in the results of 

our habitat models.  

Bivalve abundances and ash-free-dry masses 

While mapping the distribution patterns of Common Scoter and those of the bivalves collected in the 

study area showed that highest bird abundances were located in areas with highest bivalve 

abundances, these results were not distinctively represented in our habitat models. During moult, 

abundance and ash-free-dry mass showed significant effects on Common Scoter distribution in all 

except the E. leei model, with only abundance having a significant impact. During winter, the 

distribution was significantly affected by ash-free-dry mass in all four models, as well as the abundance 

of all benthic species and L. balthica. The differences in deviances explained by each selected benthos 

variable might give us a hint on the importance of certain bivalve species. The model including all 

benthic bivalves was the best for the moulting season. For the wintering season, the highest explained 

deviance was found in the L. balthica model. These results might indicate that different bivalve species 

are important as prey resources during different times. If birds prefer to feed on a certain prey item, 

this could potentially be depleted over time, thus forcing them to rely on other bivalve species.  

Despite these findings, the influence of bivalve biomass and abundance on scoter abundance was not 

as obvious as we expected. Clearly recognizable broad confidence intervals shown in the smoothing 

functions suggest a lack of insufficient data and the spatial scale of our benthic sampling likely 

contributed to these indistinct results. Most bivalve species were not evenly distributed across the 

entire study area. As a result, interpolating values for unsampled areas potentially resulted in the poor 

power of contribution to the overall models. Matching the scales of these distributions to the scale, 

which is used to sample the birds and environmental parameters, is challenging. Hernandez et al. 

(2006) reported that species distribution models are more accurate for species within a limited 

geographic range and Wisz et al. (2008) highlighted the importance of adequate sample sizes stating 

that the accuracy of these models decreased with increasing sample sizes. Focusing the study area on 

the core moulting (west of the Eiderstedt peninsula) and the core wintering area (west of Sylt) and 

performing the same models on these downsized scales showed a drastic increase in explained 

deviance. 16.59 % of Common Scoter distribution during moult and 52.01 % of their distribution during 

winter could be explained (see Appendix Table 1). This supports the assumption that, if we want to 

model habitats of a species on a large special scale, it is crucial to survey distribution patterns and 

predictors not only with sufficient samples sizes, but also with adequate matching spatial resolutions 

to avoid data inaccuracy. Schwemmer et al. (2019), who modelled the distribution of Common Scoter 

in the central eastern German Bight, found that their selected predictors explained 43.5% of deviance. 

We used a similar approach and set of predictors in our study, but wanted to expand our model to a 
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larger spatial scale. As the results of Schwemmer et al. (2019) proved that habitat modelling using 

GAMs and the choice of predictors were valuable, we assume that our models can still be improved by 

adding more detailed information to the covariates. We particularly need more emphasis on sampling 

in relation to seasonal variability. Common Scoter and bivalve distributions underlie seasonal changes. 

Matching these appropriately for our habitat models will likely improve their quality and explanatory 

power (Pearman et al. 2008, Lambert et al. 2017, Virgili et al. 2017).  

Ship traffic  

Our assumption that ship traffic has a negative impact on Scoter distribution was confirmed for the 

moulting, but not for the wintering season. However, the impact was only significant in the E. leei 

model. During moult, Common Scoter are mainly located close to the coast in shallow areas. These are 

subject to intensive recreational activities especially during summer and thus overlapping with the 

moulting period. Previous studies have already shown that Common Scoter are sensitive to 

disturbance by ship traffic revealing high flush distances compared to other seabird species 

(Schwemmer et al. 2011, Fliessbach et al. 2019). Escape behaviour during moult, when birds are 

flightless, demands a high energy expenditure. Moreover, the time used to escape reduces the time 

available for foraging. Therefore, it is to be expected that Scoters avoid areas with high disturbance 

potential during moult. The model for the wintering season showed higher probabilities of 

encountering Scoters in areas with lower ship traffic, but these values were still high compared to the 

moulting season. Yet the confidence interval of this GAM smooth was quite broad suggesting an 

insufficient amount of observations. During winter, less recreational activities occur in shallow coastal 

waters. The majority of ship traffic during this period consists of fishery or cargo vessels potentially 

reduced in frequency due to harsh weather conditions. Additionally, most of these ships travel in 

deeper waters further offshore. Thus, Scoters are less likely to encounter them. The reduced amount 

of SAS surveys (again caused by harsher weather conditions during the winter) likely provided an 

insufficient data basis and therefore, more data on ship traffic particularly during the winter is needed.  

Differences between moulting and wintering season models 

In general, the selected covariates were more suitable for the wintering compared to the moulting 

season models. The main reason for this is likely the difference in spatial scales of the sampled 

environmental variables and the observed Common Scoter distribution. As discussed before, those 

disparities may result in inaccuracy in the data, which is for example reflected by broad confidence 

intervals. The higher values of explained deviances in all four wintering season models seemed to 

confirm this. As Common Scoters are distributed over wider areas during this time, the spatial scale of 

observation points was a better match for the spatial scale of environmental parameters. Their high 

sensitivity against disturbances and long flush distances complicate the recording of their occurrences, 
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thus making it difficult to relate this highly mobile species to its sessile benthic prey. As Common 

Scoters aggregate in much smaller areas during moult, the spatial scale of this distribution was quite 

different compared to the one of the covariates. Consequently, it is not only important to adjust the 

spatial scales of the species in focus to the predictors. It is also vital to consider seasonal differences in 

distribution patterns.  

Conclusion 

Overall, the habitat models had a better fit for the wintering compared to the moulting season. The 

main cause for this is probably the dispersal of individuals during each season in combination with the 

spatial scale of sampled predictors, which need to be better matched. However, performing Zero-

inflated Poisson Generalised Additive Models using Integrated Nested Laplace Approximation proved 

to be a useful tool to model the distribution of Common Scoters in the eastern German Bight in relation 

to their environment. We remain convinced that a more detailed data basis putting more emphasis on 

considering the seasonal variation in distribution patterns and environmental parameters will give us 

a more detailed insight into how Common Scoter distribute themselves according to their seasonally 

varying needs.  
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Appendix 

 

Fig. 1 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with 

Integrated Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the 

moulting season including all benthic bivalve species. Common Scoter abundance was modelled in 

relation to (a) Latitude, (b) Depth, (c) Fine sand, (d) Bed shear stress, (e) Distance to coast, (f) 

Abundance, (g) Biomass and (h) ship traffic. The deviance explained (%), adjusted R2 and P-value of the 

Pearson residuals are given for each covariate. The dashed black middle line represents the smooth 

function estimate. 95 % confidence intervals are given in grey. Note that the y-axes of abundance and 

biomass values were log-transformed and that fine sand is given as a proportion, not as percentage. 

Abu Abundance · Ben Benthos · Bio Biomass · BSS Bed shear stress 
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Fig. 2 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with 

Integrated Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the 

moulting season including E. leei individuals. Common Scoter abundance was modelled in relation to 

(a) Latitude, (b) Depth, (c) Fine sand, (d) Bed shear stress, (e) Distance to coast, (f) Abundance, (g) 

Biomass and (h) ship traffic. The deviance explained (%), adjusted R2 and P-value of the Pearson 

residuals are given for each covariate. The dashed black middle line represents the smooth function 

estimate. 95 % confidence intervals are given in grey. Note that the y-axes of abundance and biomass 

values were log-transformed and that fine sand is given as a proportion, not as percentage. Abu 

Abundance · Bio Biomass · BSS Bed shear stress 
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Fig. 3 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with 

Integrated Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the 

moulting season including F. fabula individuals. Common Scoter abundance was modelled in relation 

to (a) Latitude, (b) Depth, (c) Fine sand, (d) Bed shear stress, (e) Distance to coast, (f) Abundance, (g) 

Biomass and (h) ship traffic. The deviance explained (%), adjusted R2 and P-value of the Pearson 

residuals are given for each covariate. The dashed black middle line represents the smooth function 

estimate. 95 % confidence intervals are given in grey. Note that the y-axes of abundance and biomass 

values were log-transformed and that fine sand is given as a proportion, not as percentage. Abu 

Abundance · Bio Biomass · BSS Bed shear stress 
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Fig. 4 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with 

Integrated Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the 

moulting season including L. balthica individuals. Common Scoter abundance was modelled in relation 

to (a) Latitude, (b) Depth, (c) Fine sand, (d) Bed shear stress, (e) Distance to coast, (f) Abundance, (g) 

Biomass and (h) ship traffic. The deviance explained (%), adjusted R2 and P-value of the Pearson 

residuals are given for each covariate. The dashed black middle line represents the smooth function 

estimate. 95 % confidence intervals are given in grey. Note that the y-axes of abundance and biomass 

values were log-transformed and that fine sand is given as a proportion, not as percentage. Abu 

Abundance · Bio Biomass · BSS Bed shear stress 
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Fig. 5 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with 

Integrated Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the 

wintering season including all benthic bivalve species. Common Scoter abundance was modelled in 

relation to (a) Latitude, (b) Depth, (c) Fine sand, (d) Bed shear stress, (e) Distance to coast, (f) 

Abundance, (g) Biomass and (h) ship traffic. The deviance explained (%), adjusted R2 and P-value of the 

Pearson residuals are given for each covariate. The dashed black middle line represents the smooth 

function estimate. 95 % confidence intervals are given in grey. Note that the y-axes of abundance and 

biomass values were log-transformed and that fine sand is given as a proportion, not as percentage. 

Abu Abundance · Bio Biomass · BSS Bed shear stress 

  



 

 
 

130 

 Modelling the distribution of the Common Scoter Melanitta nigra in relation to environmental 
parameters in the eastern German North Sea 

 

Fig. 6 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with 

Integrated Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the 

wintering season including E. leei individuals. Common Scoter abundance was modelled in relation to 

(a) Latitude, (b) Depth, (c) Fine sand, (d) Bed shear stress, (e) Distance to coast, (f) Abundance, (g) 

Biomass and (h) ship traffic. The deviance explained (%), adjusted R2 and P-value of the Pearson 

residuals are given for each covariate. The dashed black middle line represents the smooth function 

estimate. 95 % confidence intervals are given in grey. Note that the y-axes of abundance and biomass 

values were log-transformed and that fine sand is given as a proportion, not as percentage. Abu 

Abundance · Bio Biomass · BSS Bed shear stress 
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Fig. 7 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with 

Integrated Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the 

wintering season including F. fabula individuals. Common Scoter abundance was modelled in relation 

to (a) Latitude, (b) Depth, (c) Fine sand, (d) Bed shear stress, (e) Distance to coast, (f) Biomass and (g) 

ship traffic. The deviance explained (%), adjusted R2 and P-value of the Pearson residuals are given for 

each covariate. The dashed black middle line represents the smooth function estimate. 95 % 

confidence intervals are given in grey. Note that the y-axes of abundance and biomass values were log-

transformed and that fine sand is given as a proportion, not as percentage. Abu Abundance · Bio 

Biomass · BSS Bed shear stress 
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Fig. 8 Smoothing functions of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with 

Integrated Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the 

wintering season including L. balthica individuals. Common Scoter abundance was modelled in relation 

to (a) Latitude, (b) Depth, (c) Fine sand, (d) Bed shear stress, (e) Distance to coast, (f) Abundance, (g) 

Biomass and (h) ship traffic. The deviance explained (%), adjusted R2 and P-value of the Pearson 

residuals are given for each covariate. The dashed black middle line represents the smooth function 

estimate. 95 % confidence intervals are given in grey. Note that the y-axes of abundance and biomass 

values were log-transformed and that fine sand is given as a proportion, not as percentage. Abu 

Abundance · Bio Biomass · BSS Bed shear stress 
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Table 1 Results of the Zero-inflated Poisson (ZIP) Generalised Additive Model (GAM) with Integrated 

Nested Laplace Approximation (INLA) for the distribution of Common Scoter during the moulting and 

wintering season. Modelling results with the overall deviance explained and the deviance information 

criterion (DIC) of the best fitting model are given for (a) the moulting and (b) the wintering seasons. 

The mean ± standard deviation (SD) and the 25 % and 97,5 % quantiles are listed as well. As models 

were distinguished by the selected benthos variable, they have been named accordingly.  

a  Dev. Expl. (%) DIC Mean ± SD 0.025 Q 0.975 Q 

All benthos 11.72 174212.38 0.67 ± 0.001 0.66 0.67 

E. leei 8.96 2264.86 0.93 ± 0.002 0.93 0.93 

F. fabula 10.42 179341.47 0.52 ± 0.00 0.52 0.53 

L. balthica 16.59 174932.87 0.29 ± 0.0002 0.29 0.29 

      

b  Dev. Expl. (%) DIC Mean ± SD 0.025 Q 0.975 Q 

All benthos 44.17 1691.40 0.90 ± 0.0008 0.90 0.90 

E. leei 35.13 1641.14 0.90 ± 0.0001 0.90 0.90 

F. fabula 28.17 1692.01 0.90 ± 0.0004 0.90 0.90 

L. balthica 52.01 1410.14 0.45 ± 0.001 0.45 0.45 
 

Dev. Expl. Deviance explained · DIC Deviance Information Criterion · SD Standard deviation · Q Quantile  
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GENERAL DISCUSSION 

This thesis aimed at investigating the distribution and habitat selection of the Common Scoter in the 

eastern German North Sea. Based on previous studies, we already had some insight into their moulting 

and wintering season distributions in the German North and Baltic Sea, including knowledge regarding 

potentially preferred locations (Berndt & Busche 1993, Bräger et al. 1995, Garthe et al. 2003, Sonntag 

et al. 2004/2006, Garthe et al. 2007, Mendel et al. 2008, Markones & Garthe 2011). Moreover, a 

number of studies had investigated Common Scoter dietary composition and prey items (Madsen 

1954, Durinck et al. 1993, Degraer et al. 1999, Fox 2004, Wolf & Meininger 2004, Baptist & Leopold 

2009). Two studies had attempted to relate Common Scoter and prey distribution (Kaiser et al. 2006, 

Schwemmer et al. 2019). Recently, a few studies have investigated scoter dispersal in the eastern 

German North Sea in connection to environmental parameters (Deppe 2003, Heinänen et al. 2017, 

Schwemmer et al. 2019). Despite these previous studies illustrating dispersal patterns in German 

Waters throughout the year, we still lack more detailed knowledge on small scale seasonal and diurnal 

movement patterns. Since we assume that a species distributes in response to energetic demands and 

that these vary through the course of the year (both for predators and their prey), spatial and temporal 

scales need to be matched appropriately (Jones 2001). Therefore, the focus of this thesis was set on 

closing this gap by studying Common Scoter dispersal patterns and the influence of environmental 

parameters in relation to seasonal variation on a larger spatial scale.  

The results of the current thesis showed that Common Scoters consistently used the eastern German 

North Sea during their moulting and wintering season (Chapter I), thus confirming previous studies 

(e.g. Berndt & Busche 1993, Garthe et al. 2003/2007, Mendel et al. 2008). They also revealed a recent 

southbound shift in distribution during both seasons, which to my knowledge has not been reported 

before (Chapter I). Investigating prey characteristics and environmental parameters in a selected 

moulting and wintering area highlighted that those share some similarities, but they also display 

distinct differences (Chapters II, III and V). These distinctions could be the determining factors when 

it comes to differences in moulting and wintering distribution. Particularly prominent was the high 

abundance of a single bivalve species, the invasive alien E. leei (Chapter III). While it is known from 

previous studies that this species had successfully settled along the coasts of Schleswig-Holstein (e.g. 

Dannheim & Rumohr 2012), an abundance as high as it was found during the study period has to my 

knowledge not been reported before. Compared to other bivalve species found in the same areas, E. 

leei seems to be more profitable due to a higher flesh/shell ratio (Chapter II). Combined with its high 

abundance, this bivalve species thus offers a rich and reliable food resource for Common Scoter. 

Highest abundances of E. leei were detected in the southern part of the study area (one of the core 
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moulting areas), which might be a potential explanation for the increasing abundances of scoters in 

this region and thus suggests the importance of this alien bivalve species as a food resource. Examining 

seasonal distribution patterns of Common Scoter in two contrasting marine systems (the German 

North and the Danish Baltic Sea) revealed that despite environmental differences, scoters displayed 

the same dispersal patterns (Chapter IV). To my knowledge, this is a new result, which has not been 

reported so far. While the influence of environmental parameters on Common Scoter distribution has 

been studied before (Deppe 2003, Kaiser et al. 2006, Schwemmer et al 2019), no attempt has been 

made to model their distribution on a large spatial scale including seasonal differences. While this 

thesis demonstrated that a distribution model can be successfully applied, it also highlighted the 

importance of a matching spatial and temporal scale with data of sufficient spatial and temporal 

resolution (Chapter V).  

Each thesis chapter contains a detailed discussion regarding the specific questions they targeted. In 

the following, key findings and their conclusions, which have not been discussed within the chapters, 

will be considered in a broader context and in terms of their general application. Particularly the 

subsequent questions, which have already been established in the introduction, will be addressed:  

 Are there spatial and temporal differences in distribution patterns between the moulting and 

wintering season?  

 Can we identify between and within year variations in moulting and wintering dispersal 

patterns? 

 What influence do environmental parameters such as sediment, benthic communities, water 

depth and water current or anthropogenic activities (e.g. ship traffic) have on the distribution 

of Common Scoters in the German Bight?  

 Do moulting and wintering areas display distinct differences regarding these habitat 

parameters? 

 
Spatial and temporal variations in distribution patterns  

Analysing the long term distribution patterns of Common Scoters in the eastern German North Sea 

showed that this species consistently utilised the same areas as moulting and wintering grounds. 

Moreover, they revealed a consistency in dispersal patterns regarding each period. During moult, birds 

first aggregated in shallowest areas close to the coast and subsequently spread into deeper waters as 

the winter progressed. These differences in dispersal already give us a hint on preferred habitat 

characteristics for each season. During moult, Common Scoter apparently select for areas fulfilling 

their energetic demands while minimising the costs of obtaining prey. As they regrow flight feathers 
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and are thus flightless during this time, maximising energetic intake rates while simultaneously 

minimising the costs of acquiring these resources is of particular importance. Moreover, due to their 

extreme vulnerability, moulting scoters need to minimise disturbance levels as time and energy 

needed to escape from predators or anthropogenic activities reduce the time and energy available for 

foraging. During winter, scoters can afford to spent more time and energy on foraging and thus are 

able to exploit potentially and relatively less profitable resources in deeper waters. Based on the 

distinct differences in dispersal patterns between moulting and wintering seasons, we can conclude 

that the choice and utilisation of habitats in the eastern German North Sea are made in response to 

the specific life-history demands Common Scoters have during each season. As a consequence, since 

they choose different areas for each period, the provided resources in these regions likely underlie 

seasonal changes as well.  

Investigating the distribution of Common Scoter in the Danish Baltic Sea revealed that this species 

shows the same dispersal patterns despite distinct differences in both environments. In the German 

North Sea, scoters reside in tidal, more exposed waters whereas they are located in relatively sheltered 

regions with restricted tidal influence in the Danish Baltic Sea. Nevertheless, they distribute in similar 

ways: aggregating in shallow waters close to the coast during moult and spreading to deeper waters 

further offshore through the course of winter. Based on this result, we can conclude that, independent 

of the environmental variations between these two contrasting systems, they distribute themselves in 

order to maximise energy intake rates while minimising the costs of gaining resources. On the basis of 

these findings, the question arises why Common Scoter spread to deeper waters as the season 

progresses, if the environmental conditions are favourable to their energetic demands especially 

during moult. As described in Chapter IV, scoters aggregate in dense flocks during the moulting season. 

Consequently, a large cluster of birds is exploiting food resources in a limited space. Thus, these food 

resources are potentially depleted with more moulting birds arriving during the summer forcing them 

to move into deeper waters to feed in other, more profitable areas. Guillemette et al. (1996) have 

concluded that Common Eiders deplete mussel beds when wintering in the Gulf of Lawrence, which in 

turn affected their distribution. The findings of the current study highlight that Common Scoters not 

only disperse in relation to their specific demands. Their distribution is also shaped by the impacts of 

their choice of habitat. 

Despite the long term stable distribution patterns in the eastern German North Sea, slight fluctuations 

within as well as between areas are not uncommon. They have been reported in previous studies 

assuming an exchange of individuals between German Waters (movements between North and Baltic 

Sea) as well as between different North and Baltic Sea regions (fluctuations between Dutch, German 

or Scandinavian Waters) (Berndt & Busche 1993, Henning & Eskildsen 2001, Sonntag et al. 2004). 
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Movement shifts can also be assessed on a smaller spatial scale. The data analysed within this thesis 

suggests a recent shift in dispersal with more birds aggregating in the southern parts of the study area. 

This apparently is not only true for the moulting, but also for the wintering season. Up until now, it has 

been stated that moulting and wintering distribution are decisively different (e.g. Mendel et al. 2008, 

Markones et al. 2011). The findings of this thesis suggest however, that this segregation seems to be 

subject to fluctuations as well. When analysing the distribution of a species, we should therefore 

always keep in mind that dispersal patterns are not permanent. Several factors influence habitat 

selection and thus also the dispersal of a species (i. e. predation risk, type and quality of resources, 

interactions with or behaviour of conspecifics, Morris 2003). Hence, changes in one of these factors 

will ultimately result in an adjustment of the distribution pattern (Davoren et al. 2003, Morris 2003). If 

we want to be able to define appropriate conservation measures and protection strategies for a 

species, we should therefore pay attention to seasonal variations and their causes (Austin 2002, 

Hernandez et al. 2006). Most management plans are fixed. Borders of Special Protection Areas for 

example cannot be changed easily. Moreover, habitat changes are difficult to predict. Nevertheless, 

the results of this thesis highlight the importance of investigating habitat selection and use in relation 

to seasonality (preferably using long term data sets). To improve the quality of conservation measures 

and site-safeguard networks, we need to incorporate seasonal variability in habitat demands, as these 

will be reflected in seasonally varying distribution patterns (Lambert et al 2017).  

 

Habitat selection – effects of environmental parameters 

The comparison of moulting and wintering area characteristics revealed distinct differences 

particularly in their benthos community structures. Not all bivalve species collected were found at both 

sites. Moreover, abundances of those species shared between areas were different while their ash-

free-dry masses and flesh-to-shell ratios were similar. Relating the findings of the distribution pattern 

analysis to those results revealed that the most influential factor is likely prey abundance, hence 

confirming Davoren et al. (2003). This assumption is once again validated, when we look at the 

potential cause of the recently occurred southbound distribution shifts of Common Scoters. In the 

southern parts of the eastern German North Sea, the abundance of the American Razor Clam Ensis leei 

has been increasing at least since 2015/2016. Previous studies have already shown that this bivalve 

species is a profitable prey resource commonly foraged on by Common Scoters (and other seabird 

species) (Wolf & Meininger 2004, Schwemmer et al. 2019). Apparently, this change in prey condition 

has been stable enough to support moulting as well as wintering scoters for a longer time. Thus, they 

continuously aggregated in the south-eastern German North Sea during both periods.  
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When it comes to analysing distribution patterns in relation to habitat parameters, the current thesis 

has shown how important it is to match temporal and spatial scales appropriately (Seguardo & Araújo 

2004, Hernandez et al. 2006, Wisz et al. 2008). We expect Common Scoters to have different demands 

during their moulting and wintering phases and these demands should be reflected in their habitat 

choice. Incorporating this assumption into a habitat model is challenging, especially if some of the 

selected parameters are rather distinct, while others are quite similar. Identifying the most influential 

factors is thus not an easy task. However, the first attempt of modelling Common Scoter distribution 

on a large spatial scale has been partly successful. Base on the results of the habitat models the most 

decisive environmental parameters for the moulting and the wintering season could be identified. 

Moreover, including ship traffic as a factor into the analysis showed that the presence of ships has a 

strong negative impact on scoter distribution particularly during moult. Once again, this emphasizes 

the importance of low disturbance levels during the moulting season when scoters are most 

vulnerable.  

Recent studies have demonstrated that modelling the distribution of a species and predicting suitable 

habitats are useful tools for conservation decision making (e.g. Austin 2002, Johnson & Gillingham 

2005, Guisan et al. 2013, Lambert et al. 2017, Virgili et al. 2017). Using Species Distribution Models 

does not only enable us to better understand the ecology of a species in terms of the relation between 

the distribution and the suitability or quality of a habitat (Johnson &Gillingham 2005). It can also be 

beneficial for a better connection between scientists and conservation professionals (Guisan et al 

2013). 
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OUTLOOK  

The results of this thesis gave us a more detailed insight into the distribution and habitat selection of 

the Common Scoter in the eastern German North Sea and how these are influenced by seasonality. 

Nevertheless, several questions remain unanswered. 

The biggest challenge of investigating seasonal variation is probably the adequate incorporation of 

similar (if not identical) temporal and spatial scales. Relating the distribution of Common Scoters to 

the abundances and distribution patterns of their prey is one example. Scoters disperse across an area 

of several 1000s of km2, whereas differences in benthic species distributions can occur on a scale of 

<1m. While we can visually map the dispersal patterns of both and investigate the contents of 

stomachs and guts (e.g. Stempniewicz 1986, Durinck et al 1993, Leopold et al. 2007, Schwemmer et al. 

2019), this does not provide us with the final evidence that Scoters have actively been feeding in places 

where they were observed. Long flush distances (Schwemmer et al. 2011, Fliessbach et al 2019) and 

the fact that Common Scoter occur in areas further offshore (Hennig & Hälterlein 2000) complicate 

this specie’s observation. A possible way of closing this gap in knowledge is the utilisation of gps data 

loggers recording diving depth. They have successfully been used in Common Eiders (Somateria 

mollissima, Linneaus, 1758) among other species (e.g. Guillemette et al. 2007, Pelletier et al. 2007). 

Recording time and location of dives would enable us to identify locations where Common Scoters are 

foraging. As this information could potentially be obtained during the course of the year, more detailed 

insight into the exploitation of food resources during different seasons could be gathered as well. This 

would improve our understanding of habitat selection in response to seasonal variations.  

We know from previous studies that Common Scoters migrate to German Waters to moult and winter 

(e.g. Berndt & Busche 1993, Sonntag et al. 2004, Garthe et al. 2007, Mendel et al. 2008). Additionally, 

we have an overview of the extent of their breeding grounds (e.g. Glutz von Blotzheim & Bauer 1990, 

Cramp 1994). In case of the German Waters, migration sites with a high number of individuals passing 

by have been described for several locations (e.g. Berndt & Busche 1993, Nehls & Zöllick 1990, Garthe 

et al. 2003). However, the origin of these migrating individuals still needs to be verified. Hence, the 

migration routes taken and thus the interconnectivity between these areas have yet to be investigated. 

Movements and migrations of sea ducks have already been studied by American researchers to a 

greater extent mainly by using satellite transmitters (e.g. De La Cruz et al. 2009, Loring et al. 2014), 

although the effect of these devices are subject to controversial discussions (e.g. Barron et al. 2010, 

White et al. 2013, Weiser et al. 2016, Geen et al. 2019). The constant advancement of this technology 

and its concepts opens up new possibilities and can help us further our understanding of how moulting 

and wintering areas in German Waters are connected to breeding grounds of Common Scoters 
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(Robinson et al. 2010). Moreover, this would provide us with the possibility to study influences they 

are subject to during their migration. Combining knowledge on migration routes and habitat selection 

reflected in distribution patterns will enhance our understanding of Common Scoter ecology and 

enable us to define and implement suitable future conservation measures.  
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