Effect of Final Annealing Temperature on Corrosion Resistance of SZA-6 Zirconium Alloy Cladding Tubes

Article Preview

Abstract:

The corrosion resistance of SZA-6 zirconium alloy(Zr-0.5Sn-0.5Nb-0.3Fe-0.015Si) cladding tubes finally annealed at 480°C, 510°C and 560°C were studied by static autoclave in 360°C/18.6 MPa pure water and 360°C/18.6 MPa/0.01 mol/L LiOH aqueous solution. The microstructure of the samples before and after corrosion were analyzed by EBSD, TEM and SEM. The results showed that the corrosion weight gains of the three SZA-6 alloy samples were lower than that of Zr-4 alloy after 500 days corrosion in both hydrochemical mediums. After long-term corrosion, the corrosion weight gains of SZA-6 alloy in pure water and LiOH aqueous solution increased obviously with the final annealing temperature, while the corrosion weight gain of unstressed Zr-4 alloy was higher than that of recrystallized under the same condition. With the increase of the final annealing temperature, the high-angle grain boundaries in the alloy larger than 15° became more and recrystallization degree also increased. The Second Phase Precipitates (SPPs) were fine, uniform, and dispersively distributed with an average diameter of about 120 nm. Although the size and distribution of the SPPs were similar, the Nb/Fe ratio in the SPPs increased. The long-term corrosion weight gain of zirconium alloy was related to the number of parallel cracks in the oxide film and the uneven growth degree of the oxide film on the interface of the oxide film/matrix. The corrosion resistance of the alloy in two hydrochemical mediums was related to the degree of recrystallization and the content of Nb in the SPPs. Increasing the final annealing temperature would promote the formation of fine and uniform recrystallized grains, which was benefit to the corrosion resistance, but at the same time it would reduce the content of solid solution Nb in the αZr matrix, which in turn would be detrimental to the corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

488-498

Citation:

Online since:

January 2019

Export:

Price:

* - Corresponding Author

[1] A. Garner, P. Frankel, J. Partezana, et al., The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys, J. Nucl . Mater. 484(2017) 347-356.

DOI: 10.1016/j.jnucmat.2016.10.037

Google Scholar

[2] H. Hulmea, F. Baxtera, R. Prasath, et al., An X-ray absorption near-edge structure (XANES) study of the Sn L3edge in zirconium alloy oxide films formed during autoclave corrosion, Corros. Sci. 105(2016) 202–208.

DOI: 10.1016/j.corsci.2016.01.018

Google Scholar

[3] A. M. Garde, G. Pan, A. J. Mueller, et al., Oxide Surface peeling of advanced zirconium alloy cladding after high burnup irradiation in pressurized water reactors, R. Comstock (Eds.), Zirconium in the nuclear industry, J. ASTM Int., U.S.A., 2013, PP.673-689.

DOI: 10.1520/stp154320130005

Google Scholar

[4] V. N. Shishov, V. A. Markelov, A. V. Nikulina, et al., Corrosion, dimensional stability and microstructure of VVER-1000 E635 alloy FA components at burnups up to 72 MWday/kgU, M.Limback and P.Barberies (Eds.), Zirconium in the nuclear industry, J. ASTM Int., U.S.A., 2015, PP.628-648.

DOI: 10.1520/stp154320120146

Google Scholar

[5] K. N. Jang, K. T. Kim, The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding. Nuc. Eng. Tech. 46(2017)1-11.

DOI: 10.1016/j.net.2017.05.006

Google Scholar

[6] Y.Z. Liu, W.J. Zhao, Q. Peng, et al., Study of microstructure of Zr-Sn-Nb-Fe-Cr alloy in the temperature range of 750–820℃, Mater. Chem. Physics. 107(2008)534-540.

DOI: 10.1016/j.matchemphys.2007.08.031

Google Scholar

[7] O. T. Woo, M. Griffiths, The role of Fe on the solubility of Nb in α-Zr, J. Nucl . Mater. 384(2009) 77–80.

Google Scholar

[8] Y. H. Jeong, H. G. Kim, T. H. Kim, Effect of βphase, precipitate and Nb-concentration in matrix on corrosion and oxide characteristics of Zr-xNb alloys, J. Nucl . Mater. 317(2003)1-12.

DOI: 10.1016/s0022-3115(02)01676-8

Google Scholar

[9] H. G. Kim, J. Y. Park, Y. H. Jeong, et al., Ex-ractor corrosion and oxide characteristics of Zr- Nb-Fe alloys with the Nb/Fe ratio, J. Nucl. Mater. 345(2005)1-10.

DOI: 10.1016/j.jnucmat.2005.04.061

Google Scholar

[10] K. Kakiuchi, N. Itagaki, T. Furuya, Role of iron for hydrogen absorption mechanism in zirconium alloys, P.Ruding and B.Kammenzind(Eds.), Zirconium in the nuclear industry, J.ASTM Int., U.S.A., 2004, PP.349-364.

DOI: 10.1520/stp37515s

Google Scholar

[11] F. Garazrolli, Y. Broy, Comparison of the long time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests, E.R. Bradley and G.P. Sabol (Eds.), Zirconium in the nuclear industry, J. ASTM Int., U.S.A., 1996, PP. 850-864.

DOI: 10.1520/stp16204s

Google Scholar

[12] B. Cox, V. G. Kritsky, C Lemaignan, et al., Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants, Vienna, Austria,(1998).

Google Scholar

[13] L. J. Chai, B. F. Luan, Q. Liu, Effect of predeformation on microstructural evolution of a Zr alloy during 550-700℃ aging after β quenching, Acta. Mater.61(2013)3099-3109.

DOI: 10.1016/j.actamat.2013.02.001

Google Scholar

[14] R. Tewari, D. Srivastava, Microstructural evolution in zirconium based alloys, J. Nucl . Mater.38(2008) 153-157.

Google Scholar

[15] H. G. Kim, B. Jeong, K. Choi, et al., Influence of the manufacturing processes on the corrosion of Zr-1.1Nb-0.05Cu alloy, Corros. Sci. 51(2009) 2400-2406.

Google Scholar

[16] Y. Jung, M. Jeong, H. Lee, et al., Development of a manufacturing process for Zr based spacer grid materials, J. Nucl. Mater. 39(2009) 482-487.

Google Scholar

[17] D. G. Prakash, M. Preuss, M. Dahlback, et al., Microstructure and texture evolution during thermomechanical processing of β-quenched Zr, Acta. Mater. 88(2015)389-401.

DOI: 10.1016/j.actamat.2014.12.033

Google Scholar

[18] M. Preuss, P. Frankel, S. Lozano-Perez, et al., J. ASTM Int., U.S.A., 2011, PP.649-681.

Google Scholar

[19] T. M. Caroline, P. Barberis, J. ASTM Int, U.S.A., 2005,PP.81-88.

Google Scholar

[20] J. Wei, P. Frankel, E. Polatidis, et al., The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr-Sn-Nb alloys, Acta. Mater. 61(2013) 4200–4214.

DOI: 10.1016/j.actamat.2013.03.046

Google Scholar

[21] A. Couet, A. Motta, T. Ambard, et al., The coupled current charge compensation model for zirconium alloy fuel cladding oxidation, Corros. Sci. 100(2015) 73-84.

DOI: 10.1016/j.corsci.2015.07.003

Google Scholar

[22] A. Garner , A. Gholinia, P. Frankel, et al.,The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy, Acta Mater. 80(2014)159-166.

DOI: 10.1016/j.actamat.2014.07.062

Google Scholar

[23] P. Platt, P. Frankel, M. Gass, et al., Critical assessment of finite element analysis applied to metal–oxide interface roughness in oxidising zirconium alloys, J.Nucl. Mater. 464(2015)313-317.

DOI: 10.1016/j.jnucmat.2015.05.002

Google Scholar

[24] K. J. Annand, I. MacLaren, M. Gass, Utilising Dual EELS to probe the nanoscale mechanisms of the corrosion of Zircaloy-4 in 350 ℃ pressurised water, J. Nucl. Mater. 465(2015) 390-399.

DOI: 10.1016/j.jnucmat.2015.06.022

Google Scholar

[25] G. Sundell, M. Thuvander, H. O. Andrén, Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys, Corros. Sci. 102(2016)490-502.

DOI: 10.1016/j.corsci.2015.11.002

Google Scholar

[26] A. Ly, M. Ambard, L. Blat-Yrieix, et al., Understanding Crack Formation at the Metal/Oxide Interface During Corrosion of Zircaloy-4 Using a Simple Mechanical Mode, M.Limback and P.Barberies (Eds.), Zirconium in the nuclear industry, J.ASTM Int., U.S.A., 2011,PP. 682-707.

DOI: 10.1520/stp49279t

Google Scholar

[27] P. G. Frankel, J. Wei, E. M. Fruncis, et al., Effect of Sncorrosion mechanisms in advanced Zr-cladding for pressurised water reactor, R. Comstock (Eds.), Zirconium in the nuclear industry, J.ASTM Int., U.S.A., 2013,PP.404-427.

Google Scholar

[28] P. Platt, P. Frankel, M. Gass,et al., Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys, J. Nucl. Mater. 454(2014) 290-296.

DOI: 10.1016/j.jnucmat.2014.08.020

Google Scholar

[29] J. P. Mardon, D. Charquet, J .Senevat, Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy, G.P. Sabol and G.D. Moan (Eds.), Zirconium in the nuclear industry, J.ASTM Int., U.S.A., 2000,PP. 505-526.

DOI: 10.1520/stp14314s

Google Scholar

[30] A. Couet, A.T. Motta, R.J. Comstock, Effect of alloying elements on hydrogen pickup in zirconium alloys, R. Comstock (Eds.), Zirconium in the nuclear industry, J. ASTM Int., U.S.A., 2013,PP. 479-502.

DOI: 10.1520/stp154320120215

Google Scholar

[31] V. Chabretou, P. B. Hoffmann, S. T. Pritsching, Ultra low tin quaternary alloys PWR performance-impact of tin contnt on corrosion resistance, Irradiation growth and mechanical properties, M.Limback and P.Barberies (Eds.), Zirconium in the nuclear industry, J. ASTM Int., U.S.A., 2011,PP. 801-824.

DOI: 10.1520/stp49284t

Google Scholar

[32] G. Wikmark, P. Ruding, The importance of oxide morphology for the oxidation rate of zirconium alloys, E.R. Bradley and G.P. Sabol (Eds.), Zirconium in the nuclear industry, J. ASTM Int., U.S.A.,1996,PP. 55-81.

DOI: 10.1520/stp16167s

Google Scholar

[33] M. Y. Yao, J. H. Wang, J. C. Peng, Study on the role of second phase particles in hydrogen uptake behavior of zirconium alloys, M.Limback and P.Barberies (Eds.), Zirconium in the nuclear industry, J. ASTM Int., U.S.A., 2011: 466-492.

DOI: 10.1520/stp49271t

Google Scholar

[34] A. Garner, J. Hu, A. Harte, et al. The effect of Sn concentration on oxide texture and microstructure formation in zirconium alloys, Acta Mate. 99(2015) 259–272.

DOI: 10.1016/j.actamat.2015.08.005

Google Scholar

[35] J. L. Zhang, X. F. Xie, M. Y. Yao et al. Study on the Corrosion Resistance of Zr-1Nb-0.7Sn- 0.03Fe-xGe Alloy in Lithiated water at 360℃, Acta. Metall. Sin. 49(2013)443-447.

DOI: 10.3724/sp.j.1037.2012.00638

Google Scholar

[36] I. Bespalov, M. Datler, S. Buhr, et al., Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study, Ultramicroscopy.159(2015) 147–151.

DOI: 10.1016/j.ultramic.2015.02.016

Google Scholar