Effect of Cell Cycle Phase on Sf9 Cell Activity and Autographa Californica Multiple Nucleopolyhedrovirus Infection

Article Preview

Abstract:

The distribution and activity of cell receptors, which are key factors of baculovirus-insect cell interactions, may be attributed to cell cycle. In fact, the virtual difference in time of infection is the difference in cell cycle distribution. In this work, the effects of cell cycle on cell activity and baculovirus production were investigated. Sf9 cells were infected with baculovirus at the different cycle phases. It was found that G1 phase plays a substantial role in cell activity and competence for the baculovirus replication. Sf9 cells have the highest succinate dehydrogenase activity and are most sensitive for the baculovirus replication when the proportion of G1 phase in cell population reaches a maximum. On the hand, cell activity is at the lowest when G2/M percentage reaches its maximum. These results provide a guidance in developing the baculovirus infection dynamics model and controlling the expression of useful foreign genes when cell cycle is taken into account.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 610-613)

Pages:

115-119

Citation:

Online since:

December 2012

Export:

Price:

[1] B. C. Bonning and B.D. Hammock: Genet. Eng. Rev. Vol. 10 (1992), p.455

Google Scholar

[2] T.A. Kost, J.P. Condreay, and D.L. Jarvis: Nat. Biotechnol. Vol. 23 (2005), p.567

Google Scholar

[3] M.M. Cox: Curr. Opin. Mol. Ther. Vol. 10 (2008), p.56.

Google Scholar

[4] N. Kioukia, A.W. Nienow, A.N. Emery, and M. Al-rubeai: J. Biotechnol. Vol. 38 (1995), p.243

Google Scholar

[5] M. Lecina, A. Soley, J. Gràcia, E. Espunya, B. Lázaro, J.J. Cairó, and F. Gòdia: J. Biotechnol. Vol. 125 (2006), p.385

DOI: 10.1016/j.jbiotec.2006.03.014

Google Scholar

[6] J.F. Power, S. Reid, K.M. Radford, P.F. Greenfield, and L.K. Nielsen: Biotechnol. Bioeng. Vol. 44 (1994), p.710

Google Scholar

[7] A. Elena, Prikhod'ko, and L.K. Miller: J. Virol. Vol. 72 (1997), p.684

Google Scholar

[8] S.C. Braunagel, R. Parr, M. Belyavskyi, and M.D. Summer: Virology Vol. 244 (1998), p.195

Google Scholar

[9] A.V. Probst, E. Dunleavy, and G. Almouzn: Nat. Rev. Mol. Cell Biol. Vol. 10 (2009), p.192

Google Scholar

[10] K. Baumann: Nat. Rev. Mol. Cell Biol. Vol. 11 (2010), p.389

Google Scholar

[11] G.L. Springett, R.C. Moen, S. Anderson, and R.M. Blaese: J. Virol. Vol. 63 (1989), p.3865

Google Scholar

[12] D.G. Miller, M.A. Adam, and A.D. Miller: Mol. Cell Biol. Vol. 10 (1990), p.4239

Google Scholar

[13] M.B. Gu, P. Todd, and D.S. Kompala: Biotechnol. Bioeng. Vol. 42 (1993), p.1113

Google Scholar

[14] M. Fussenegger, X. Mazur, and J.E. Bailey: Biotechnol. Bioeng. Vol. 55 (1997), p.927

Google Scholar

[15] D. E. Lynn and W.F. Hink: J. Invertebr. Pathol. Vol. 32 (1978), p.1

Google Scholar

[16] T. Saito, T. Dojima, M. Toriyama, and E.Y. Park: J. Biotechnol. Vol. 93 (2002), p.121

Google Scholar

[17] R. Haas, S. Reid, and L.K. Nielsen, in: Effects of multiplicity of infection (MOI) and cell cycle on baculovirus infection kinetics in Animal Cell Technology Meets Genomics, edited by F Gòdia, and M Fussenegger, Springer, Netherlands, Vol. 2 (2005), p.163

DOI: 10.1007/1-4020-3103-3_31

Google Scholar

[18] C.F. Shen, J. Meghrous, and A. Kamen: J. Virol. Methods Vol. 10 (2002), p.321

Google Scholar

[19] C.P.D. Brussaard: Appl. Environ. Microbiol. Vol. 70 (2004), p.1506

Google Scholar

[20] E.B. Carstens, S.T. Tjia, and W. Doerfler: Virology Vol. 101 (1980), p.311

Google Scholar

[21] D.C. Kelly, and X. Wang: Ann. Virol. (Inst Pasteur), Vol. 132E (1981), p.247

Google Scholar