Thermodynamic Assessment of SiO2-ZrO2 Binary System

Article Preview

Abstract:

The SiO2-ZrO2 binary system has been thermodynamically assessed with CALPHAD approach. The substitutional solution model is adopted for liquid. A set of self-consistent parameters capable of reproducing the corresponding experimental phase diagram data and liquidus immiscibility data has been obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

September 2014

Export:

Price:

* - Corresponding Author

[1] Information on http: /nsf. gov/mps/dmr/reports. jsp.

Google Scholar

[2] J. Fuller and M.D. Sacks, J. Mater. Sci., 39(19) (2004) 5885-5885.

Google Scholar

[3] L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams. New York: Academic Press. (1970).

Google Scholar

[4] R.F. Geller and S.M. Lang, J. Am. Ceram. Soc., 32, Suppl. (1949) 157.

Google Scholar

[5] N.A. Toropov and F.Y. Galakhov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 2(1956) 153-156.

Google Scholar

[6] P. Dörner, L.J. Gauckler, H. Krieg, H.L. Lukas, G. Petzow, and J. Weiss, CALPHAD 3( 4) (1979) 241-257.

DOI: 10.1016/0364-5916(79)90023-3

Google Scholar

[7] W.C. Butterman and W.R. Foster, Am. Mineral., 52(1967) 881-885.

Google Scholar

[8] H.B. Barlett, J. Am. Ceram. Soc., 14(1932) 837-843.

Google Scholar

[9] A. Gaudon, A. Dauger, A. Lecomte, B. Soulestin, and R. Guinebretiere, J. Eur. Ceram. Soc., 25(2005) 283-286.

Google Scholar

[10] D.N. Kamaev, S.A. Archugov, and G.G. Mikhailov, Russ. J. Appl. Chem., 78(2) (2005) 200-203.

Google Scholar

[11] V.H. Stott and A. Hilliard, Trans. Brit. Ceram. Soc., 48(4) (1949) 133-143; Ceram. Abstr., 1950, March, p. 48f.

Google Scholar

[12] A. Kaiser, M. Lobert, and R. Telle, J. Eur. Ceram. Soc., 28(11) (2008) 2199–2211.

Google Scholar

[13] E.W. Washburn and E.E. Libman, J. Am. Ceram. Soc., 3(1920) 634 -640.

Google Scholar

[14] N. Zhirnowa, Z. Anorg. Allgem. Chem., 218(1934) 193-200.

Google Scholar

[15] A. Cocco and N. Schromek, Ceramica (Milan), 12(1958) 45-48.

Google Scholar

[16] C.E. Curtis and H.G. Sowman, J. Am. Ceram. Soc., 36 (6) (1953) 190-198.

Google Scholar

[17] R.C. Newton, C.E. Manning, J.M. Hanchar, and R.J. Finch, J. Am. Ceram. Soc., 88(7) (2005) 1854-1858.

Google Scholar

[18] E. Rosén and A. Muan, J. Am. Ceram. Soc., 48 (11) (1965) 603-604.

Google Scholar

[19] H. ST.C. O'Neill, Am. Mineral., 91(2006) 1134-1141.

Google Scholar

[20] R.W.G. Wyckoff, second. ed. Crystal Structure, 3, Wiley, New York. 1963, p.15.

Google Scholar

[21] M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, and A. M. Syverud. Janaf Thermochemical Tables. 3rd Edition, J. Phys. Chem. Ref. Data, 14 (Suppl. 1). 1985. 1-1856.

Google Scholar

[22] R. D. Schuiling, L. Vergouwen, and H. Van der Rijst, Am. Mineral., 61(1-2) (1976) 166-168.

Google Scholar

[23] A.J.G. Ellison and A. Navrotsky, J. Am. Ceram. Soc., 75(6) (1992) 1430-1433.

Google Scholar

[24] J.M. Ferry, R.C. Newton, and C.E. Manning, Am. Mineral., 87(2002) 1342-1350.

Google Scholar

[25] J.L. Fleche, Phys. Rev. B, 65(2002) 245116.

Google Scholar

[26] R. Terki, G. Bertrand, and H. Aourag, Microelectron. Eng. , 81(2005) 514-523.

Google Scholar

[27] J.P. Coughlin and E.G. King, J. Am. Chem. Soc., 72(5) (1950) 2262-2265.

Google Scholar

[28] C. Wang, M. Zinkevich, and F. Aldinger, J. Am. Ceram. Soc., 89(12) (2006) 3751-3758.

Google Scholar

[29] B. Hallstedt, CALPHAD, 16(1992) 53-61.

Google Scholar

[30] B. Sundman, B. Jansson, and J.O. Andersson, CALPHAD, 9(1985) 153-190.

Google Scholar

[31] H. Kim and P.C. McIntyre, J. Appl. Phys., 92(9) (2002) 5094-5102.

Google Scholar