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Abstract. The paper is devoted to the estimate 

|u(s,fe)KiY|fc|(cap.„(.F) : >(£(*, e)) J ' 

2 $C p < n for a solution of a degenerate nonlinear elliptic equation in a domain B(a;o, 1) \ F, 
F C B(xo,d) = {x 6 Rn: |xo — x\ < d], d < \, under the boundary-value conditions 
u(x, k) = k for x 6 OF, u(x, k) = 0 for x 6 dB(x0,1) and where 0 < g <_ dist(x, F), w(x) is 
a weighted function from some Muckenhoupt class, and c&<ppw(F), w(B(x, g)) are weighted 
capacity and measure of the corresponding sets. 

Keywords: degeneracy, Muckenhoupt class, pointwise estimate, nonlinear elliptic equa­
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In the study of behaviour of solutions of nonlinear elliptic and parabolic equations 
an important role is played by special estimates of model problems in domains with 
small holes (see [1, 2]). In many cases this role is analogous to that of estimates 
of singular solutions of linear equations. By using these estimates the following 
problems were studied: asymptotical behaviour and the construction of correctors 
for nonlinear elliptic and parabolic problems in perforated domains, a necessary 
condition for the regularity of boundary points, the stability of solutions of nonlinear 
problems with respect to the variation of domains. The proof and applications of 
these estimates for elliptic equations are given in [1]. This paper is devoted to the 
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extension of the method of obtaining of pointwise estimates for degenerate nonlinear 

elliptic equations. 

1. AUXILIARY LEMMAS AND STATEMENT OF THE RESULT 

Let w be a locally integrable nonnegative function in RTl and assume that 0 < 

vi(x) < oo almost everywhere. We say that w belongs to the Muckenhoupt class At, 

1 < t < oo, if there exists a constant ct>u, such that 

(i) W\ Iw dx ^Ct,w' ^ ' w lL'dx' 
1 

,Ш 

for all balls B in R'\ By |J3| we denote the Lebesgue n-measure of a measurable set 

E C R". 

We shall note only certain properties of functions from Muckenhoupt class. 

Lemma 1. If w 6 At, then 

(2) (^Wc W{E) 

( 2 ) {]B\) ^Ct'wwWr 

where B is an arbitrary baii in Un,E is a measurabie subset ofB and 

w(E) — / w(x) Ax. 

Lemma 2. If w 6 At, t > 1, then w G At-E for some e, 0 < _ < i — 1. Moreover, 

e and ct_£il„ depend only on n, t, cttW. 

For the proofs of Lemmas 1, 2 see [3], Chapter 15. 

Lemma 3. Suppose w G At and s > t. Then w G As. 

This statement immedeatly follows from the Holder inequality and (1). 

Lemma 4. (At-weighted Poincare inequality) Suppose w 6 At and let for arbi­

trary x, s, h, 0 < _ <. h an inequality 

s(w(B(x,s))\j jw(B(x,s))xi 
h\w(B(x,h))) ~" \w(B(x,h))J ' y ' 



JioJd with a constant c independent of x, s, h. Then 

B B B 

where B = B (x0,r), v(x) e Cco(B) and C is independent of x0, r, v. 

Lemma 5. (Aj-weighted Sobolev inequality) With the same hypotheses as in 

Lemma 4 we have 

[^)J^q^^)7'^H^I\dJ^íw{x)dx 

where B = B (x0,r), v(x) e C0
X(B) and C is independent of x0, r, v. 

For the proofs of Lemmas 4, 5 see [4]. 

Definition and basic properties of the Muckenhoupt class At were explicitly studied 

in [3]. 

Let F be an arbitrary compact set in R". Let us denote by d the minimum of 
the radii of balls containing F, and let x0 be the center of such a ball with radius d, 

satisfying F C B(x0,d). Here and in the sequel B(x,r) denotes the ball with radius 
r and center at x. 

Let ip(x) be a function from the class C0
x(B(x0,1)), equal to one in B (x0, | ) . If 

d < | , then for an arbitrary real k we consider a nonlinear elliptic boundary value 

problem 

(3) Ê ^ . | ) = 0 , X Є Д 

(4) u(x) = kф(x), x e дD. 

H&eD = B(x0,l)\F. 

We assume that the functions at(x,g), i = l,...,n, are defined for x e B (here 

and in the sequel B = B(x0,1)) and g £ Rn, and satisfy the following conditions: 

At) functions at(x,g) axe continuous in g for almost every x e B, measurable in 

x for all g e R"; 
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K-t) there are positive constants v\, v-z such that for 2 <. p < n and x € B, g, 

Q £ B" the inequalities 

|o . (ar ,S )K^|^ | ' - 1w(a:) , 

f^[o.(:r,-)-o,(-,g)](ff.-g.)>0, 

VJat'(a;,S)ffi > v2\g\pw(x) 

hold, where u>(x') £ ,4 (p_1)+ii(Rn), [ ^ ( a ; ) ] - ^ G y4_£T(1_i)(BJn), 

R e m a r k 1. Let us choose iv(x) = \x\a,— n + p < a < n(p - 1) — (n — p) and 
p > 2. In this case w(x) satisfies A2. This is easily verified by a direct computation. 

A solution of the boundary value problem (1), (2) is a function u(x, k) € Wp (D, w) 

such that u(x,k) — kip(x) 6 W°i(D,w) and the integral identity 

(5) è /*(*>?: ' ) 5Г<ъ = ° • dx dxi 

holds for arbitrary function <p(x) 6 Wp(D,w). 

The definitions and properties of weighted Sobolev spaces Wp(Sl,w),W°l(tt,'<'i) 

were studied in [3, 4, 5] (here Q C R"). 

The existence and uniqueness of the function u(x, k) follows from the global theory 

of monotone operators (for example, see [1]). The function u(x, k) is assumed to be 

extended to F by the constant k. 

For the purpose of formulation of our main result let us introduce the notion of 

weighted (p, to)-capacity capPiU, (see [3]). 

The number 

(6) capp,„,(i3) = inf / I ^ - ¥ w ( x ) dx 

B 

is called the (p,^-capacity of the closed set E C B(x0, §). The infimum in (6) is 
taken over all functions v(x) 6 Q°(B) satisfying the equality v(x) = 1 for x € E. 

Further, we shall prove the following 

Theorem. Let us assume that conditions Ai, A2, are satisfied. Then there exists 

a constant K depending only on n, p, V\, V2 and the Muckenhoupt constant cv,w of 



w such that, for a solution u(x, k) of the problem (1), (2) and for an arbitrary point 

xeD, 

(7) i«(*.*)i<^i*iK..(^5(^rt)}Jil' 
where 0 < g <. g(x, F). 

R e m a r k 2 . In case w(x) = 1 the estimate (7) coincides with the pointwise 
estimate of the solution of nonlinear Dirichlet problem obtained by the first author 
in [2], Exactness of (7) follows also from 

G(x,0 " - " ' 
w(B(x,\x-t\)) 

for the fundamental solution G(x,£) of the operator 

L= £z>*. (ay(s )Z>, , . ) , 
i,j=l 

where a;,-,- (x) are real-valued, symmetric and 

AwWICI2 < JT a^x)^ <. \w(xM2, 

whenever A > 0, f = ( f i , . . . , f „ ) , and w(x) is the same as in condition A2 (case 
p = 2). This estimate was obtained in [6]. 

2. PROOF OF THE MAIN RESULT 

Let us assume k > 0. 

Lemma 6. Let us assume that conditions Aj, A2 are satisfied and let u(x, k) be 

•the solution of the problem (1), (2). Then forkytO 

0<_ \u(x,k) :£ 1. 

P r o o f . Let us take the test-function <pi(x) = min{ti(a;,A;),0} in the integral 

identity (5) and use the condition A2. We obtain 

f\du(x,k)\ 

дx 
w(x) йx <. 0, 

where D\ = {x € D: u(x,k) < 0}. Erom this inequality it follows that u(x,k) >. 0. 

Similarly, replacing <p(x) in (5) by <f>i(x) = max{u(x,k) - k,0} the inequality 

u(x, k) <. k is established. • 
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Lemma 7. Assume that conditions A\, A2 are satisfied. Then there exists a 

constant c\, depending only on n, p, v\, v^, cp>u,, such that 

(8) f du(?'-k) I w(x) dx <. c,k"capp w(F). 

P r o o f . Let us take the test-function <p = u(x, k) — kip(x) in the integral identity 

(5), where ip(x) is from the class C^(B), and xjj is equal to one in F. Using the 

condition A2 and Young's inequality we estimate the terms of the obtained equality 

and get 

(9) / I — | - r - \ w ( x ) d x < . c 2 k p j H ^ w(x)dx. 

Here and in the sequel we denote by Ci constants depending only on the same pa­

rameters as the constant K in the formulation of the Theorem. 

By virtue of definition (6), inequality (9) proves the estimate (8). D 

Let us denote for 0 < n < k 

Etl = {xeD:0^ u(x,k) <_ n). 

Lemma 8. Let us assume that conditions A\, A2 are satisfied. Then there exists 

a constant C3 such that 

(10) j\^^Yw{x)dx ^ C 3 ^ P - I c a p ^ f F ) . 

E,t 

P r o o f . We substitute <p(x) = u,t(x,k) — %u(x,k) in (5), where ufx(x,k) = 

mm{u(x,k),u}. By standard computations and (8) we obtain (10). D 

In order to prove Theorem we need some auxiliary results. 

Lemma 9. Let 2 ^ p < n and w 6 A(p_i)+ji, [w]'^ e j4_t_(1__j. For airy 

function v(x) 6 Wol
p(B(0, R),w) and any numbers r,R, satisfying the conditions 

0 < r ^ R the inequality 

(11) / \v(x)\fw(x)dx ^ K^ J \~^fw(x)dx 



holds with a constant K\ depending only on n, p, cTiW. 

P r o o f . Without loss of generality we may assume that v(x) £ Cg°(B(0,R)). 

From Ap-weighted Poincare inequality we have 
(12) 

B(0,r) 

^ d f c j y I \v{x)-\mhr\ I v{y)Ay\w{x)Ax 

+ 2ř'-'íw(b)\ I lviy)ldyJ 
B(0,r) 

j | ^ | ^ ( s ) d x + C 4 ^ _ i _ j |w ( y ) | d > "\ w(B(0,r)) 
B(0,r) ' " B(0,r) 

Now we only need to estimate the last term on the right-hand side of (12). 
Let LO = rjj. A straightforward calculation yields 

R R 

(13) |„(*)| = |/-^wM) d*| < |/|£(-")|d.|-

Transforming the last integral on the right-hand side of (12) into spherical coordinates 
with respect to the variables |x| e [0,r], w = A e Si(0), using (13) and Holder 
inequality, we obtain 

(14) 

W)\ I lv(y)ldyY = {w(kr)\I I NlxMIN-d.dNi}1 J l - - . | ß ( o , . . 
B(0,r) OSi(O) 

r R 

Ч ж õ î / / / i £ M ) l љ | æ Г l d ш d W F 
0S,(0) | * | 

r R 

^{wbwll I |£м)Г»м)."-idWd.w-idм 
0 |x|Si(0) 

r R - 1 

x í f f [ [wiuĄГ^Гïä дwàĄxy-1 à\x\\ 



Ar** I \TM'*A 
B(0,R) 

T R 

x {( \x\n-1 í í [w(U)]~^t-T^ <k,jdtd[x\\ 
;|s,(o) 

Now we estimate separately the integral 

R 

I2= f [ [w(ut)}-7hri^diodt= f \z\=^L [w(z)]-l^ dz 

|x|Si(0) |xK|z|s:/f 

(15) ^ £ j \z\^[w(zT^dz 

^c7f2(V\x\)^ j [w(zT^dz. 
i=1 NK2i|x| 

Since w"^ _ j4___/1_ i \ , by Lemma 2, t u - ? ^ e j4__ . / 1 _ i \ _ e i , where _i > 0. 

Now, using (2), from (15) we obtain 

/ 2 < c 8 £ ( 2 % | ) ^ ( 2 ^ ( y p £ ' j M_)]-?-Td_ 
(16) 

S í c в l x l ^ j [w(z)]-^dz. 

By virtue of Lemma 3, w 6 AP, and estimating the integral on the right-hand side 
of (16) with the help of (1) we have 

(17) I2 <i d o Ixl^-*" |_| J * [w(B(0, N ) ) ] - ^ = c 1 0 | i | ^ tw(B(0, M ) ) ] " ^ • 

Since to € AP_1+IL, by Lemma 2, w e A p_ 1 +__ e , , where e2 > 0. Using this, we 

obtain from Lemma 1 

(18) [w(B(0,\x\))r^ ^ C l l [ ^ + h ^ [w(B(0,r))]-^ . 
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Thus from (14), (17), (18) we have 

/ i < c 1 2 K B ( 0 , r ) ) ] - V - « » 

B(0,ІÎ) 

[ \dv, ^lí' / 
^Ci3M5(iv)) y \YMW{X)AX 

B(p,R) 

Now the desired estimate follows from (12) and the last inequality. D 

R e m a r k 3 . In case p — 2 the statement of Lemma 9 coincides with the 

statement of Lemma 2.2 in [7]. 

P r o o f of T h e o r e m . Let ( be an arbitrary point of D and for 0 < g <. 

Q(£, F) we define the numerical sequence 

e j = $[3 - 2->], j = l,2,... 

Let functions Vj(x) be equal to one on Bj = B ((, Qj) and to zero outside Bj+i, and 

such that 0 $ ipj(x) <. 1, | 2&M| <. 2 i l . 

Substitute >p(x) = [u(x,k)]a+1[4>j(x)]T+J' into (5), where a,r are arbitrary positive 

numbers. Using A2 and Young's inequality, we obtain 

(19) í ^ v.°i>]+pwúx 4 CU(T +p)P?Z.[mj+ly-1 ftť+^wdx, 

where rtij = max{u(a;,k): x ^ Bj}-

Let t, she arbitrary positive numbers satisfying the inequalities 

npo - P npo - p 

where l < p o < P ~ l + ^ and po depends only on n, p, cP)W. Then 

{ut+?(x,k)éfp(x)}^ e w\ {B (Cfe) ,w). 



By virtue of __p-weighted Sobolev inequality and (19) we have 

[«?> / (w")~.*]s 

B((,ie) 

^c15o[w(B(S,lo))ri 
x { ( i + p ) p / isr«< t + p )^-^ s + r t^-di 

B(.,J-) 

+(.+PF / ^ ^ I ^ I V ^ ^ - ^ I " 
B(U.) 

< c i a(- + s +p? [w (B ((, y))]~i V [mi+l)
tT-

( f ( i+ p)-£lL_£_p +J ( _ + p ) ^ Z _ - p | J 
X < / l i l ™ »™ T Vj -U) d.T ^ . 

B ( { , | . ) 

Using Lemma 1, we obtain from the last inequality 

/ ut+pi)s+pwdx < ci7(< + s+p)%^[w(B(ti, g))}-^7 

Bj+i 

x [vp
m

p-]f^- [ j u«+py^-p+^+py^-pwdx^. 

Choosing 

.-.+?M(=h)'-?<'-i>-" p J \ ? i p o - p ^ p 

S = SІ = [p + n p 0 ] ( - —) -npo-p, 
'\npa-pJ 

we rewrite the last inequality in the form 

2«'=S 

where Ji = J uti+pipSi+pwdx. 

182 



X J0. 

By iterating we arrive at 
(21) 

[ J . ] ( £ ^ £ ) ' < {c19 [vvm]-\] ^ [w(B(t,e))]^ 

When i tends to infinity, then (21) yields 

(22) [mj]^^p-1)^c302
in^[w(B(^Q))]-1[mj+1]^^-^ j u^wdx. 

Bj+i 

Now we estimate the integral on the right-hand side of (22) by Lemma 8 and Lemma 

9: 

/ upipjW dx ^ / [ií.mj+1]
pu>d:r 

Bj+ 

(2 3 ) ^c21e
p j I ^ L d s 

J dx 
E"'j+i 

^C22Spmj+1k
p-1capPtW(F). 

By virtue of (22), (23) implies 

(24) K F + T<"-»> <; ^ s 2 i » P o _ ^ _ [ m . + l ] 1 + = S - ( r - i ) f c P - i cap^.JF) , 

Further we shall use the following: 

Lemma 10. Let {m} be a bounded number sequence satisfying 

oii ̂  ylaf+ 1a\ i = 1,2,... 

with positive constants A, a, a 6 (0,1). Then we have 

en ^ cATzr' 

with a constant c depending only on a and a. 

For the proof of Lemma 10 see [1], Chapter 5. 
Finally, from (24) and Lemma 10 we have 

mi ^C2ik\c&pp<w(F)-
'w(B(t-,(>)). 

and so the inequality (7) is established. 
This completes the proof of Theorem. 

D 
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