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This document constitutes the supplementary material for the paper Modeling Hierarchical Seasonality
Through Low-Rank Tensor Decompositions in Time Series Analysis. Here, we provide further details regarding
Bayesian low-rank hierarchical seasonality (BLRHS) in Section 1, and include additional details and results
regarding our univariate (Section 2) and multivariate experiments (Section 3).

1 Further Details on Bayesian Low Rank Hierarchical Seasonality

1.1 Defining BLRHS with a Tucker Decomposition

We have defined BLRHS with a CP decomposition in the main paper. Here we define BLRHS with a Tucker
decomposition.

Definition 1 (Bayesian low-rank hierarchical seasonality with a Tucker decomposition). Let the tensorM∈
RP1×···×PN×K

≥0 be the multiple cyclical folding of an observed seasonality. Let m
(n)
rn (resp. krK ) be rn’th (resp.

rK ’th) column of the random factor matrix M(n), (resp. K). Bayesian low-rank hierarchical seasonality
(BLRHS) utilizing a Tucker decomposition proposes the following generative model:

P (M|M̂) =
∏

i[N+1]

Poisson(M(i[N+1])|M̂(i[N+1])),

M̂ = λ
∑

r1,...,rN ,rK

G(r1, . . . , rN , rK)
(
m(1)

r1 ◦ · · · ◦m
(N)
rN ◦ krK

)
,

λ ∼ Gamma(a, b),

m(n)
rn ∼ Dirichlet(1 · α(Pn ·Rn)), ∀rn ∈ [Rn],∀n ∈ [N ]

krK ∼ Dirichlet(1 · α(K ·RK)), ∀rK ∈ [RK ]

vec(G) ∼ Dirichlet(1 · α(R1 · · · · ·RN ·RK)),

where vec is the tensor vectorization operator, Dirichlet distributions have flat priors with a concentration pa-
rameter α(L) := a/L, and a, b are hyperparameters of the model. A multivariate extension of this construction
is straightforward with an additional mode of cardinality I and the corresponding random factor matrix I with
columns irI ∼ Dirichlet(1 · α(I ·RI)).

1.2 Variational Inference with BLRHS

We now detail the variational inference (VI) procedure we utilize in BLRHS as sketched out in Section IV-B1
of the main paper. We described posterior inference with respect to the parameters/latent variables of the
model as a central inferential task.1 Ignoring the hyperparameters for convenience, in the case of BLRHS

1In certain probabilistic modeling contexts, it might make sense to distinguish between model parameters and latent variables.
This is not the case in this paper, and we use these terms interchangeably.
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with CP decomposition, this corresponds to characterizing or approximating P (λ,M(1), . . . ,M(N),K,w|M).
Mean-field VI (MFVI) [1] proposes to achieve this approximation with a factorized variational distribution:

P (λ,M(1), . . . ,M(N),K,w|M) ≈ Q(λ,M(1), . . . ,M(N),K,w)

= q(λ)q(M(1)) . . . q(M(N))q(K)q(w).

In order to approximate the posterior, we minimize the KL-divergence between the actual and variational
posteriors DKL(Q∥P ). Collecting all latent variables under the term ζ, this implies the following equality:

logP (M) = DKL(Q∥P )− EQ[logQ(ζ)− logP (ζ,M)],

with the rightmost term, evidence lower bound (ELBO) being a lower bound to the log-likelihood due to
the nonnegativity of KL-divergence. ELBO is frequently used for model selection as an approximation of the
marginal log-likelihood. For ease of presentation we assign the following notation to ELBO:

BP [Q] := −EQ[logQ(ζ)− logP (ζ,M)].

Under the mean-field assumption, a common procedure for maximizing the ELBO, sometimes referred to as
coordinate ascent variational inference (CAVI), involves updating the parameters of variational distributions
in an alternating fashion. This update scheme has convergence guarantee to a local optimum, and for a random
variable Z the updates can be derived as

q(Z) ∝ expEζ\Z [P (M, ζ)], (1)

where the expectation is with respect to the variational distributions of all latent variables except Z. The
updates dictate the forms of the variational posteriors. Models with appropriately chosen conditional distri-
butions lead to variational posteriors that have recognizable forms, making it possible to derive the updates
analytically [1, 2].

As described in the main paper, among different probabilistic formulations of nonnegative tensor factoriza-
tion, we emulate the approach by Bayesian Allocation Model (BAM) framework as presented in [3]. A central
modeling choice by the authors is important for inference with BLRHS, which is augmenting the generative
model with the auxiliary latent tensor S called the allocation tensor. As we will see below, this is very useful
for obtaining tractable updates, and is therefore utilized in this paper as well. In describing inference with
this extended model we will emulate some of [3]’s notation for convenience. Their formulation’s generality
will allow the procedure derived below to be equally applicable to the CP and Tucker versions of BLRHS we
presented in the main paper and above. Our implementation of both, as well as source code for replicating
our experiments and further exploring our modeling approach can be found in the paper’s GitHub repository:
https://github.com/mbarsbey/lrhs.

We let V ⊆ [F ] denote the set of all observed variables, and V̄ the set of all unobserved (latent) variables.
We let the total number of random variables equal F = |V | + |V̄ |. For example in univariate time series
models, |V | = N + 1 for both CP and Tucker decompositions, while |V̄ | is 1 and N + 1 for these two models
respectively. We will apply this notation when indexing as well, e.g. iV := {iv : v ∈ V }, alongside our existing
notation for indexing, e.g. i[F ]. Note that our use of N and F differ from [3]. For deriving MFVI in this

augmented model, instead of M and M̂, we will be working with their extended versions, S and Ŝ. S is a
latent tensor defined such that it includes all F random variables, observed and latent, as its modes. Crucially,
M = SV , where a subscript on SA refers to the sum of S across all variables that are not in the variable set
A. We now write BLRHS according to [3]’s extended model structure:

M = SV (2)

P (S|Ŝ) =
∏
i[F ]

Poisson(S(i[F ])|Ŝ(i[F ])), (3)

Ŝ(i[F ]) = λθ(i[F ]), (4)

λ ∼ Gamma(a, b), (5)

θ(i[F ]) =

F∏
f=1

θf |pa(f)(f |pa(f)), (6)

θf |pa(f) ∼ Dirichlet(1 · α(f, pa(f))), ∀f ∈ [F ]. (7)
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Note that in this definition, instead of fixing a particular conditional independence structure, as in∑R
r=1 wr(m

(1)
r ◦· · ·◦m(N)

r ◦kr) in the original definition of BLRHS with CP, we explicitly invoke the factoriza-
tion implied by the Bayesian network that characterizes the assumed decomposition, Θ := {θf |pa(f) : f ∈ [F ]},
where pa(f) refers to the parents of the variable f in the graphical model. This means that the derivation
here applies for both CP and Tucker variants of BLRHS as well as other custom dependence structures [3].
The graphical models for both variants can be seen in Figure 1, which we repeat from the main paper for
convenience. Also note that here we redefine α(f, pa(f)) := a/L(f, pa(f)) such that L(·) is a function that
takes the product of the cardinalities of all variables in its input, and f, pa(f) := {f} ∪ pa(f).

In this setting, θf |pa(f) are (latent) conditional probability tables. To reemphasize the connection between
the notation here and in the main paper, in a BLRHS model with a CP decomposition and with daily and
weekly seasonalities (P1 = 24, P2 = 7), observe that θhour|r = M(1), and θhour|r=i(hour|r = i) = P (hour|r =

i) = m
(1)
i . Similarly, θday|r = M(2), and θday|r=i(day|r = i) = P (day|r = i) = m

(2)
i .

From this point onwards, our exposition closely follows [3] with notational modifications. We will provide
the forms of the updates for the variational distributions, as well as the expression for the ELBO. For a detailed
derivation of these updates we refer the reader to [3]. Having restructured our generative model, we state
ELBO as below:

BP [Q] = −EQ [logQ(ζ)− logP (ζ,M)] (8)

= EQ

[
log

P (S, λ,Θ,M)

Q(S, λ,Θ)

]
(9)

= EQ

[
log

P (S, λ,Θ)I(SV =M)

Q(S, λ,Θ)

]
(10)

where I(·) is 1 if its argument is true, 0 otherwise, and (10) is due toM = SV . In [3] the following factorization
scheme is assumed for the variational posterior2: Q(S, λ,Θ) = q(S)q(λ,Θ). Based on (1), the CAVI updates
in this construction correspond to:

q(S) ∝ exp
(
Eq(λ,Θ) [logP (S, λ,Θ) + I(SV =M)]

)
, (11)

q(λ,Θ) ∝ exp
(
Eq(S) [logP (S, λ,Θ) + I(SV =M)]

)
. (12)

Computing these expectations imply the following forms for the variational distributions, where we write the
parameters of the variational distributions explicitly as subscripts when relevant:

qσ(S) =
∏
iV

Multinomial
(
S(:, iV );M(iV ), σ(:, iV )

)
, (13)

q(λ,Θ) = q(λ)q(Θ) = q(λ)

F∏
f=1

q(θf |pa(f)), (14)

qℓ(λ) = Gamma(λ; ℓ, b+ 1), (15)

qτ (θf |pa(f)) =
∏

ipa(f)

Dirichlet(θf |pa(f)(: |pa(f)); τf,pa(f)(:,pa(f))), ∀f ∈ [F ] (16)

(17)

where σ is a tensor that has same dimensionality with S and τ is a set of vectors/matrices/tensors with the
dimensions identical to those in Θ. Given a set of variables A ⊂ [F ], S(:, iA), refers to the fiber/slice/subtensor
that extends along the indices f ∈ [F ] : f /∈ A for the given iA. During inference, the following variational

2Although the assumption Q(S, λ,Θ) = q(S)q(λ,Θ) can be more accurately termed structured mean-field, as seen below q(S)
and q(λ,Θ) further factorize to produce a fully factorized variational posterior.
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parameter updates are made in an alternating fashion:

σ(i[F ])←
exp

(∑F
f=1 EQ

[
log θf |pa(f)(if |ipa(f))

])
∑

iV̄
exp

(∑F
f=1 EQ

[
log θf |pa(f)(if |ipa(f))

]) , ∀i[F ] (18)

ℓ← a+ EQ [S+] (19)

τf,pa(f) ← ᾱ(f, pa(f)) + EQ

[
Sf,pa(f)

]
, (20)

where S+ =
∑

i[F ]
S(i[F ]), Sf,pa(f) corresponds to the sum of S over [F ]\(f, pa(f)), and Sf,pa(f)(:, ipa(f))

corresponds to the slice/fiber/subtensor of this sum selected by ipa(f). For a set of variables A, ᾱA is tensor
that have the dimensionality of the members of A, and equals 1 ·α(A) with α (re)defined as in Definition 1 in
Appendix 1.2. The expectations included above can be written as

EQ [λ] = ℓ/(b+ 1), (21)

EQ [log λ] = ψ(a+ EQ [S+])− log(b+ 1), (22)

EQ

[
θf |pa(f)(if |ipa(f))

]
= ψ(τf,pa(f)(if,pa(f)))− ψ(τpa(f)(ipa(f))), (23)

EQ

[
Sf,pa(f)

]
= (EQ [S])f,pa(f) , (24)

EQ

[
S(i[F ])

]
=M(iV )σ(i[F ]), (25)

with ψ corresponding to the digamma function. The update procedure described above requires EQ

[
Sf,pa(f)

]
,

i.e. marginal statistics of EQ [S]. This in turn requires access to σ(i[F ]),∀i[F ]. While explicitly storing σ might
be potentially prohibitive, since σ(i[F ]) respects the factorization implied by the graphical model in question,

we can compute the marginal statistics EQ

[
Sf,pa(f)

]
with the junction tree algorithm, which drastically reduces

the memory requirements for the overall procedure [3].
Any missing entries are treated as Poisson-distributed latent variables, whose variational distributions qM̂

are also updated at each iteration of MFVI. Given the set of all missing entry indices Ω, we have:

M̂(i′V )←
∑
i′
V̄

exp

EQ [log λ] +

F∑
f=1

EQ

[
log θf |pa(f)(i

′
f |i′pa(f))

] ,∀i′V ∈ Ω. (26)

Accordingly, (13) and (25) are modified such that M̂(i′V ) replace M(i′V ) for missing entries. After training,

the variational posterior can be used to infer the missing entries,M(i′V ) ≈ EQ [M(i′V )] = M̂(i′V ),∀i′V ∈ Ω.
The updates can be stopped as the ELBO converges to a local optimum. Given that it has no guarantees to

converge to a global minimum, it is a good practice to start this procedure with different random initializations
and pick the solution with highest ELBO. The resulting ELBO can be and is frequently used for model selection
as described above. As [3] show, expanding (10) reveals the following expression for ELBO:

BP [Q] =a log b− (a+ EQ [S+]) log(b+ 1) + log Γ(a+ EQ [S+])− log Γ(a)

+

F∑
f=1

∑
ipa(f)

log Γ(ᾱpa(f)(ipa(f)))−
F∑

f=1

∑
if,pa(f)

log Γ(ᾱf,pa(f)(if,pa(f)))

−
F∑

f=1

∑
ipa(f)

log Γ(ᾱpa(f)(ipa(f)) + EQ

[
Spa(f)

]
(ipa(f)))

+

F∑
f=1

∑
if,pa(f)

log Γ(ᾱf,pa(f)(if,pa(f)) + EQ

[
Sf,pa(f)

]
(if,pa(f)))

−
∑
iV /∈Ω

log Γ(M(iV ) + 1)−
∑
i[F ]

EQ

[
S(i[F ])

]
log σ(i[F ]). (27)

As expressed above, the exposition above is mostly a restatement of the findings of [3] adapted for our notation.
See [3] for a more in-depth treatment of variational inference under these modeling assumptions, as well as a
sequential Monte Carlo based inference scheme that relies on a sequential interpretation of the same model.
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Figure 1: BLRHS utilizing CP and Tucker decompositions, modeling multivariate time series with temporal
observations taken at different locations. Figure repeated from the main paper for convenience.

1.3 BLRHS with Continuous Nonnegative Data

A potential limitation of utilizing BAM for BLRHS is the former’s assumption of Poisson likelihood, limiting
the model to discrete nonnegative data. In practice this is not necessarily an important hindrance for continu-
ous nonnegative datasets with large observations since the data can be interpreted as the sum of discrete values
and element-wise independent uniform noise. So, given M ∈ RP1×···×PN×K

≥0 , we can let M = M̃ + E , where
M̃ ∈ ZP1×···×PN×K

≥0 , and E(i[F ]) ∼ U(0, 1),∀i[F ]. This allows recovering M̃ with an element-wise flooring
operation.

1.4 Hyperparameters of BLRHS

Before providing additional background and results regarding our experiments, we detail model selection for
model hyperparameters, a and b. We set b using an empirical Bayesian approach following [3], where we let
b = a/S+ = a/M+, leading to the expectation of Gamma distribution to be the sum of all data. In the case
of missing observations in M, we set b = a/Π(M)+, where Π is a projector that sets missing entries to 0.
Note that as in [3], the α also depends on a, where the resulting Bayesian Dirichlet (likelihood) Equivalent
Uniform prior assigns equal likelihoods to models within the same Markov equivalence class. This leaves a as
the only free hyperparameter. For all experiments where model selection was conducted, the hyperparameter
a was scanned for between 1e2 and 1e6. We specify the a hyperparameters we ended up selecting for each
experiment separately below, along with model selection results on ranks and/or decompositions.

2 Additional Details and Results for Univariate Experiments

2.1 Discrete Transforms and Fourier Basis Regression

Discrete Fourier transform (DFT) [4, Ch. 4] and discrete cosine transform (DCT) [5, 6] are frequently used
to recover periodic patterns in signals in signal processing and time-series analysis. This is especially useful
when one has no prior knowledge of the periods of the seasonalities present in the data, since one can use only
the frequencies that have the most power to reconstruct the periodic signal s.

In contrast, when the periods in data are known beforehand, one can regress the time series on a set of
known orthogonal Fourier components [7]. For example, for periods P1, P2, · · · , PN , and defining P̄n =

∏n
i=1 Pi

one can assume

st =

N∑
n=1

R∑
r=1

(
a(n,r) sin

(
2πrt

P̄n

)
+ b(n,r) cos

(
2πrt

P̄n

))
.

Then, a(n,r), b(n,r) can be inferred in a straightforward manner e.g., via ordinary least squares. This is an
approach taken within many industrial forecasting systems including Prophet [8], usually in combination with
other methods for handling trend-cycle and outlier observations.

2.2 Additional Parameter and Performance Analyses

In the main paper, we compared the parameter count and performance of the algorithms tested on the
Electricity-75 dataset. In Figure 2 we present the same analysis for the remaining datasets. For all, the vertical
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dashed line denotes the number of parameters required by Holt-Winters and other classical decompositions.
The x-axis denotes the number of free parameters in each method, and y-axis denotes error. Both axes are
log-scaled for ease of presentation.

3 Additional Details and Results for Multivariate Experiments

3.1 Multivariate Experiments on Traffic-75 Dataset

We now conduct an analysis of the Traffic-75 dataset with BLRHS. As mentioned in the main paper, Traffic
dataset records the occupancy rates of road segments in California, United States as the percentage of total
capacity [9]. For our multivariate experiments, we model one year of this dataset, which corresponds to a
tensor with dimensions 508×24×7×52, with the indices corresponding to the time series, hour of the day, day
of the week, and week of the year. For this experiment we scan through various CP and Tucker decomposition
structures. For CP decompositions we scan through R = {2, 3, 4, 5, 6, 7, 8, 9, 10}, and for Tucker decompositions
through R = (Ri, Ri, Ri, Rj), where Ri ∈ {2, 3, 4} and Rj ∈ {2, 3, 4, 5, 6, 7, 8}. As opposed to missing data
imputation experiments, we replace missing data with segment-based averages as a preprocessing step in order
to avoid the additional computational cost of conducting MFVI with missing data, since the missing data only
accounts for < 0.01 of the cells. We scale all observations by multiplying with 10 and apply the discretization
described in Appendix 1.3 to emulate counts. The selected model is a CP decomposition with R = 7 and
a = 2000.

3.1.1 Results

To examine what different seasonality patterns are captured by different latent variable levels, we visualize the
model’s estimates P̂ (day,hour|r) in Figure 3. Note that the different patterns that are picked up by separate
latent dimensions in the form of conditional probabilities correspond to qualitatively different seasonal behavior
in vehicle use. For example, the latent variable values r = 1, 2, 3, 4 correspond to morning and evening rush
hours, where vehicle use increases due to commuters. Interestingly, the model allocates two latent dimensions
to the morning and evening rush hours each. This turns out to be appropriate, as the model picks up on the
changes in the highway occupancy due to daylight saving time. r = 5 seems to capture early commute at the
end of the week, and the remaining r = 6, r = 7 capture weekend traffic, in addition to some of the remaining
weekday traffic. These results support those in Section V of the main paper in demonstrating that BLRHS
can be used to extract interpretable information from large temporal datasets.

3.2 Additional Details on NYC YT Experiments

For NYC Yellow Taxi data, which has the dimensions 265 × 265 × 24 × 7 × 25, we select among Tucker
decomposition models with latent ranks R = (Rloc, Rloc, Rtime, Rtime, Rweek), where Rloc ∈ {2, 3, 4}, Rtime ∈
{2, 3, 4, 5}, and Rweek ∈ {2, 3}. The model with the highest ELBO has R = (4, 4, 5, 2, 2) and a = 1000. Our
experiments show that further increasing the latent dimensions increase ELBO only for spatial dimensions,
which are not of interest for this article. Therefore we upper bound Rloc to 4 for more expedient inference.

3.3 Additional Details on BART Experiments

For BART ridership data the observed tensor dimensions are 50 × 50 × 24 × 7 × 53 × 12. We select among
Tucker decomposition models with latent ranks R = (Rloc, Rloc, Rtime, Rtime, Rtime, Ryear), where Rloc ∈
{2, 3, 4}, Rtime ∈ {2, 3, 4, 5}, and Ryear ∈ {2, 3}. The chosen model has R = (4, 4, 4, 2, 4, 2) and a = 1000.

Note that we use a different cardinality for week of the year in multivariate experiments (53) compared
to the univariate experiments (52). This is due to the irregularity of weeks according to years. ISO 8601’s
week date system prescribes some years to include an additional “leap week”, making the total 53 for these
select years. Although assuming 52 weeks and conducting cyclical folding is acceptable for the purposes of the
univariate experiments, in the multivariate experiments we opt to observe consistency with calendar years, so
that our Covid-related results are easier to interpret.
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(a) Comparison of errors vs. the number of parameters required in the Electricity-85 dataset.
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(b) Comparison of errors vs. the number of parameters required in the Traffic-75 dataset.
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(c) Comparison of errors vs. the number of parameters required in the Traffic-85 dataset.
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(d) Comparison of errors vs. the number of parameters required in the BART dataset.
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(e) Comparison of errors vs. the number of parameters required in the BART-1Y dataset.

101 102

Number of Parameters (log)

0.020

0.030

0.040

Er
ro

r (
lo

g)

MAE (In Sample)

DCT
DFT
FB
HW
LRHS-CP
LRHS-CP-S
LRHS-T
LRHS-T-S

101 102

Number of Parameters (log)

0.020

0.030

0.040

0.050

0.060
RMSE (In Sample)

101 102

Number of Parameters (log)

0.050

0.060

0.070

0.080

MAE (Out of Sample)

101 102

Number of Parameters (log)

1.00

0.06

0.07

0.08

0.09

×10 1 RMSE (Out of Sample)

(f) Comparison of errors vs. the number of parameters required in the Energy dataset.
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(g) Comparison of errors vs. the number of parameters required in the Energy-1Y dataset.

Figure 2: Comparison of errors vs. the number of parameters for different datasets in univariate experiments.
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Figure 3: Estimates P̂ (day,hour|r) for all latent variable values r in Traffic-75 dataset. The model captures
different cyclic patterns of human commute behavior.

Table 1: BART station mappings used in the main paper for spatiotemporal analysis.

Code Station Code Station Code Station Code Station Code Station
12TH 0 16TH 1 19TH 2 24TH 3 ASHB 4
BAYF 5 CIVC 6 COLS 7 CONC 8 DALY 9
DBRK 10 DELN 11 EMBR 12 FRMT 13 FTVL 14
GLEN 15 LAFY 16 LAKE 17 MCAR 18 MLBR 19
MONT 20 PHIL 21 PITT 22 POWL 23 ROCK 24
SBRN 25 SSAN 26 UCTY 27 WOAK 28 BALB 29
DUBL 30 NBRK 31 ORIN 32 WCRK 33 NCON 34
RICH 35 SANL 36 COLM 37 HAYW 38 SHAY 39
CAST 40 PLZA 41 SFIA 42 WDUB 43 ANTC 44
WARM 45 PCTR 46 OAKL 47 BERY 48 MLPT 49

Lastly, the mapping used between station names and station indices while presenting BART readership
analyses in the main paper’s Figure 9 can be found in Table 1.

3.4 Additional Details on Missing Data Imputation Experiments

For the Guangzhou traffic data in the imputation experiments, which has the dimensions 214× 61× 144, we
use a CP decomposition and search among R = {5, 25, 50, 150, 300, 450}, corresponding to a range of 1000-fold
to 10-fold parameter decrease. The model selection is conducted based on a held-out dataset that corresponds
to 0.01 of the total cells, from among the uncensored data. The held-out dataset is used for early stopping the
variational inference procedure, and the RMSE of the best epoch is used to compare models between latent
ranks and hyperparameters. The selected hyperparameters can be seen in Table 2.

The fact that the dataset includes traffic speeds with real nonnegative values poses a problem given the
Poisson likelihood assumed in the generative model. In this case, we avoid a discretization scheme described in
Appendix 1.3 since it would prevent comparing the performance of BLRHS with previous related work directly.
Therefore, in this case we proceed without any preprocessing, and apply the MFVI updates as described in
Appendix 1.2. This renders marginal likelihood and ELBO undefined, preventing a likelihood-based model
comparison. However, as described in the main paper, this is not necessarily prohibitive in this particular
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problem, as model selection through performance on a held-out validation set is more appropriate here due to
the performance metrics utilized.

Table 2: Selected hyperparameters for the missing data imputation experiments.

Random Missing
Missing Ratio 0.1 0.2 0.3 0.4 0.5

R 450 450 450 450 450
a 6× 104 6× 104 7.5× 104 6× 104 6× 104

Correlated Missing
Missing Ratio 0.1 0.2 0.3 0.4 0.5

R 35 45 40 40 40
a 1.1× 104 1× 104 5× 104 12.5× 104 12.5× 104

Similar to [10] we experiment with different data representations, and go up to 4 temporal indices creating
a 5-order tensor with dimensions 214 × 6 × 24 × 7 × 9. The cardinality 6 in the second mode is due to the
observations having been made with 10 minute intervals. For this specific task, like [10] we find that a 3-order
tensor with dimensions 214× 61× 144 produces the best results, according to which we present our findings.
This is not necessarily surprising given the nature of this data: there is no inherent reason for traffic speed to
have an hourly seasonality. The opposite can be expected in other contexts. For example, in a dataset that
records elevator use in a company, half and full hours might see increased travel between meeting rooms and
offices due to meetings starting and ending, leading to a strong hourly seasonality.
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