Carbon Nanotubes: A Brief Outlook on History, Synthesis Methods and Various Bio-Hydrocarbon Sources

Article Preview

Abstract:

This paper reports a brief outlook of carbon nanotubes (CNT) history, synthesis methods as well as natural carbon sources such as camphor powder, turpentine, eucalyptus, palm, neem, coconut, castor, olive, corn, sesame oil, palm olein, waste cooking palm oil and waste chicken fat.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

792-797

Citation:

Online since:

November 2013

Export:

Price:

[1] Z. Yang, X. Chen, H. Nie, K. Zhang, W. Li, B. Yi and L. Xu, Direct synthesis of ultralong carbon nanotube bundles by spray pyrolysis and investigation of growth mechanism, Nanotechnology. 19, (2008) 085606.

DOI: 10.1088/0957-4484/19/8/085606

Google Scholar

[2] Y. Zhang, Physical Properties Investigation of Nanostructure Material and Their Application, Ph.D. Thesis, University of Califonia, Santa Cruz, Califonia, USA, 2007.

Google Scholar

[3] A. Yu, Processing and Applications of Carbon Based Nano-Materials, Ph.D. Thesis, University of California, Riverside, California, USA, 2008.

Google Scholar

[4] M. Endo, R. Saito, M.S. Dresselhaus, & G. Dresselhaus, From Carbon Fibers to Carbon Nanotubes, CRC Press, Boca Raton, FL, 1997.

Google Scholar

[5] J. Abrahamson, P.G. Wiles and B.L. Rhoades, Structure of carbon fibers found on carbon arc anodes, Carbon. 37 (1999) 1873-1874.

DOI: 10.1016/s0008-6223(99)00199-2

Google Scholar

[6] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley, C60: Buckminsterfullerene, Nature. 318 (1985) 162-163.

DOI: 10.1038/318162a0

Google Scholar

[7] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[8] N. Wang, Z.K. Tang, G.D. Li and J.S. Chen, Materials science: Single-walled 4 Å carbon nanotube arrays, Nature. 408 (2000) 50.

Google Scholar

[9] H. Sugime, S. Noda, S. Maruyama and Y. Yamaguchi, Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests, Carbon. 47 (2009) 234-241.

DOI: 10.1016/j.carbon.2008.10.001

Google Scholar

[10] G.S. Duesberg, W.J. Blau, H.J. Byrne, J. Muster, M. Burghard and S. Roth, Experimental observation of individual single-wall nanotube species by Raman microscopy, Chem. Phys. Lett. 310 (1999) 8-14.

DOI: 10.1016/s0009-2614(99)00594-1

Google Scholar

[11] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert and R.E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization Chem. Phys. Lett. 243 (1995) 49-54.

DOI: 10.1016/0009-2614(95)00825-o

Google Scholar

[12] K.C. Mondal, A.M. Strydom, R.M. Erasmus, J.M. Keartland and N.J. Coville, Physical Properties of Cvd Boron-Doped Multiwalled Carbon Nanotubes, Mater. Chem. Phys. 111 (2008) 386-390.

DOI: 10.1016/j.matchemphys.2008.04.034

Google Scholar

[13] J. Xiao, Study of Factors Affecting the Synthesis of Carbon Nanotubes by Spray Pyrolysis, Master Thesis, University of Texas, El Paso, Texas, USA, 2007.

Google Scholar

[14] L.H. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando and S. Iijima, Materials science: The smallest carbon nanotube, Nature. 408 (2000) 50-51.

DOI: 10.1038/35040699

Google Scholar

[15] J.B. Park, G.S. Choi, Y.S. Cho, S.Y. Hong, D. Kim, S.Y. Choi, J.H. Lee and K.I. Cho, Characterization of Fe-catalyzed carbon nanotubes grown by thermal chemical vapor deposition, J. Cryst. Growth. 244 (2002) 211-217.

DOI: 10.1016/s0022-0248(02)01661-5

Google Scholar

[16] Y. Yabe, Y. Ohtake, T. Ishitobi, Y. Show, T. Izumi and H. Yamauchi, Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced cvd method, Diam. Relat. Mater. 13 (2004) 1292-1295.

DOI: 10.1016/j.diamond.2003.11.067

Google Scholar

[17] P. Ghosh, T. Soga, R.A. Afre and T. Jimbo, Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: Turpentine oil, J. Alloys Compd. 462 (2008) 289-293.

DOI: 10.1016/j.jallcom.2007.08.027

Google Scholar

[18] P. Ghosh, T. Soga, M. Tanemura, M. Zamri, T. Jimbo, R. Katoh and K. Sumiyama, Vertically aligned carbon nanotubes from natural precursors by spray pyrolysis method and their field electron emission properties, Appl. Phys. A: Mater. Sci. Process. 94 (2009) 51-56.

DOI: 10.1007/s00339-008-4856-9

Google Scholar

[19] B. Bhushan, Springer Handbook of Nanotechnology, Springer, Berlin, Heidelberg, 2007.

Google Scholar

[20] J. Robertson, Realistic applications of CNT, Mater. Today. 7 (2004) 46-52.

Google Scholar

[21] P. Ghosh, R.A. Afre, T. Soga and T. Jimbo, A simple method of producing single-walled carbon nanotubes from a natural precursor: Eucalyptus oil, Mater. Lett. 61 (2007) 3768-3770.

DOI: 10.1016/j.matlet.2006.12.030

Google Scholar

[22] T.Y. Tsai, N.H. Tai, K.C. Chen, S.H. Lee, L.H. Chan and Y.Y. Chang, Growth of vertically aligned carbon nanotubes on glass substrate at 450°C through the thermal chemical vapor deposition method, Diam. Relat. Mater. 18 (2009) 307-311.

DOI: 10.1016/j.diamond.2008.09.001

Google Scholar

[23] G.W. Ho, A.T.S. Wee, J. Lin and W.C. Tjiu, Synthesis of well-aligned multiwalled carbon nanotubes on ni catalyst using radio frequency plasma-enhanced chemical vapor deposition, Thin Solid Films. 388 (2001) 73-77.

DOI: 10.1016/s0040-6090(01)00828-8

Google Scholar

[24] R.A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, P.R. Somani and M. Umeno, Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies, Micropor. Mesopor. Mat. 96 (2006) 184-190.

DOI: 10.1016/j.micromeso.2006.06.036

Google Scholar

[25] D. Perednis and L.J. Gauckler, Thin film deposition using spray pyrolysis, J. Electroceram. 14 (2005) 103-111.

DOI: 10.1007/s10832-005-0870-x

Google Scholar

[26] S.R.C. Vivekchand, L.M. Cele, F.L. Deepak, A.R. Raju and A. Govindaraj, Carbon nanotubes by nebulized spray pyrolysis, Chem. Phys. Lett. 386 (2004) 313-318.

DOI: 10.1016/j.cplett.2003.11.115

Google Scholar

[27] K. Mukhopadhyay and M. Sharon, Glassy carbon from camphor - a natural source, Mater. Chem. Phys. 49 (1997) 105-109.

DOI: 10.1016/s0254-0584(96)01918-9

Google Scholar

[28] M. Kumar, K. Kakamu, T. Okazaki and Y. Ando, Field emission from camphor-pyrolyzed carbon nanotubes, Chem. Phys. Lett. 385 (2004) 161-165.

DOI: 10.1016/j.cplett.2003.12.064

Google Scholar

[29] M. Kumar and Y. Ando, Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support, Carbon. 43 (2005) 533-540.

DOI: 10.1016/j.carbon.2004.10.014

Google Scholar

[30] A.A. Azira, N.F. A. Zainal, S.F. Nik, F. Mohamad, T. Soga, S. Abdullah and M. Rusop, Carbon Nanotubes Using Palm Oil as Carbon Source in Spray Pyrolysis System, presented at International Conference of Nanoscience and Nanotechnology 2008, Shah Alam, Selangor, Malaysia, 2008.

DOI: 10.1063/1.3160244

Google Scholar

[31] A.B. Suriani, A. A. Azira, S. F. Nik, R. Md Nor, and M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett. 63 (2009) 2704-2706.

DOI: 10.1016/j.matlet.2009.09.048

Google Scholar

[32] A.B. SURIANI, M.S. AZMINA, M. SALINA, A.R. DALILA, N.A. FALINA, J. ROSLY, M. RUSOP, EFFECT OF SYNTHESIS TIME ON CARBON NANOTUBES GROWTH FROM PALM OIL AS CARBON SOURCE BY THERMAL CHEMICAL VAPOR DEPOSITION METHOD, PRESENTED AT IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS DESIGN, SYSTEMS AND APPLICATIONS, 2012; KUALA LUMPUR, 2012.

DOI: 10.1109/icedsa.2012.6507792

Google Scholar

[33] R. KUMAR, S.T. RADHEY, N.S. ONKAR, SCALABLE SYNTHESIS OF ALIGNED CARBON NANOTUBES BUNDLES USING GREEN NATURAL PRECURSOR: NEEM OIL, NANOSCALE RES. LETT. 6 (2011) 92.

DOI: 10.1186/1556-276x-6-92

Google Scholar

[34] S. Paul, S.K. Samdarshi, A green precursor for carbon nanotube synthesis, New Carbon Mater. 26 (2011) 85-88.

DOI: 10.1016/s1872-5805(11)60068-1

Google Scholar

[35] M.S. Azmina, A.B. Suriani, M. Salina, A.A. Azira, A.R. Dalila, N.A. Asli, M. Rusop, Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes, Nano Hybrid. 2 (2012) 43-63.

DOI: 10.4028/www.scientific.net/nh.2.43

Google Scholar

[36] K. Awasthi, R. Kumar, H. Raghubanshi, S. Awasthi, R. Pandey, D. Singh, O.N. Srivastava, Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials. Bull. Mater. Sci. 34 (2011) 607-614.

DOI: 10.1007/s12034-011-0170-9

Google Scholar

[37] S.A.M. Zobir, A.B. Suriani, S. Abdullah, Z. Zainal, S.H. Sarijo, and M. Rusop, Raman spectroscopic study of carbon nanotubes prepared using Fe/ZnO-palm olein-chemical vapour deposition, J. Nanomater. (2012) 1-6.

DOI: 10.1155/2012/451473

Google Scholar

[38] A.B. Suriani, R. M. N. and, and M. Rusop, Vertically aligned carbon nanotubes synthesized from waste cooking palm oil, J. Ceram. Soc. Jpn. 118 (2010) 963-968.

DOI: 10.2109/jcersj2.118.963

Google Scholar

[39] A.N. Falina, A.B. Suriani, M.S. Azmina, M. Salina, A.R. Dalila, R.M. Nor, M. Rusop, Structural characteristics and field electron emission properties of carbon nanotubes synthesized from waste cooking palm oil. Jurnal Teknologi 59 (2012) 93-97.

DOI: 10.1109/icedsa.2012.6507792

Google Scholar

[40] A.B. Suriani, A.R. Dalila, A. Mohamed, M. H. Mamat, M. Salina, M. S. Rosmi, J. Rosly, Roslan Md Nor, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste chicken fat, Mater. Lett. 101 (2013) 61-64.

DOI: 10.1016/j.matlet.2013.03.075

Google Scholar