Skip to main content
Log in

New phylogenetic lineages of the Spirochaetes phylum associated with Clathrina species (Porifera)

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Though spirochetes have been repeatedly found in marine sponges and other invertebrates, little attention has been paid to the specificity of this association. This study demonstrates that different genoand morphotypes of spirochetes can reside within the same sponge individual and develop in considerable numbers. Specimens of the calcareous sponge Clathrina clathrus collected from the Adriatic Sea off Rovinj (Croatia) were found to harbor spirochete-like bacteria, which were characterized by scanning electron microscopy (SEM), 16S rRNA gene analysis, and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). Two novel spirochete sequence types related to the Brachyspiraceae could be retrieved. By use of specifically designed CARD-FISH probes, the C. clathrus-associated sequences could be assigned to a linear and a helical spirochete morphotype. Both were located within the sponge mesohyl and resembled the spirochete-like cells identified by SEM. In addition, from a Clathrina sp., most likely C. coriacea, that originated from Indonesian coastal waters, four different spirochete type sequences were recovered. Two of these also affiliated with the Brachyspiraceae, the other two were found associated with the Spirochaetaceae, one with the genera Borrelia and Cristispira.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  • Bosshard, P.P., S. Abels, R. Zbinden, E.C. Böttger, and M. Altwegg. 2003. Ribosomal DNA sequencing for identification of aerobic Gram-positive rods in the clinical laboratory (an 18-month evaluation). J. Clin. Microbiol. 41, 4134–4140.

    Article  PubMed  CAS  Google Scholar 

  • Boury-Esnault, N., L. De Vos, C. Donadey, and J. Vacelet. 1984. Comparative study of the choanosome of Porifera: I. The Homoscleromorpha. J. Morphol. 180, 3–17.

    Article  Google Scholar 

  • Canale-Parola, E., Z. Udris, and M. Mandel. 1968. The classification of free-living spirochetes. Arch. Microbiol. 63, 385–397.

    CAS  Google Scholar 

  • Cardenas, E., W.M. Wu, M.B. Leigh, J. Carley, S. Carroll, T. Gentry, J. Luo, and et al. 2008. Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl. Environ. Microbiol. 74, 3718–3729.

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst, F.E., M.A. Tamer, R.E. Ericson, C.N. Lau, V.A. Levanos, S.K. Boches, J.L. Galvin, and B.J. Paster. 2000. The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiol. Immun. 15, 196–202.

    Article  CAS  Google Scholar 

  • Evans, N.J., J.M. Brown, I. Demirkan, R.D. Murray, W.D. Vink, R.W. Blowey, C.A. Hart, and S.D. Carter. 2008. Three unique groups of spirochetes isolated from digital dermatitis lesions in UK cattle. Vet. Microbiol. 130, 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1989. PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166.

    Google Scholar 

  • Friedrich, A.B., I. Fischer, P. Proksch, J. Hacker, and U. Hentschel. 2001. Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38, 105–113.

    Article  CAS  Google Scholar 

  • Gerçe, B., T. Schwartz, M. Voigt, S. Rühle, S. Kirchen, A. Putz, P. Proksch, U. Obst, C. Syldatk, and R. Hausmann. 2009. Morphological, bacterial, and secondary metabolite changes of Aplysina aerophoba upon long-term maintenance under artificial conditions. Microb. Ecol. 58, 865–878.

    Article  PubMed  CAS  Google Scholar 

  • Grabowski, V. 2002. Nachweis und Charakterisierung von Actinobakterien und einigen Planktomycetales aus marinen Schwämmen. Ph.D. Christian-Albrechts-Universität, Kiel, Germany.

    Google Scholar 

  • Guindon, S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.

    Article  PubMed  Google Scholar 

  • Guner, E.S., M. Watanabe, N. Hashimoto, T. Kadosaka, Y. Kawamura, T. Ezaki, H. Kawabata, Y. Imai, K. Kaneda, and T. Masuzawa. 2004. Borrelia turcica sp. nov., isolated from the hard tick Hyalomma aegyptium in Turkey. Int. J. Syst. Evol. Microbiol. 54, 1649–1652.

    Article  PubMed  CAS  Google Scholar 

  • Hentschel, U., L. Fieseler, M. Wehrl, C. Gernert, M. Steinert, J. Hacker, and M. Horn. 2003. Microbial diversity of marine sponges, pp. 60–88. In W.E.G. Müller (ed.), Molecular marine biology of sponges, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Hentschel, U., J. Hopke, M. Horn, A.B. Friedrich, M. Wagner, J. Hacker, and B.S. Moore. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431–4440.

    Article  PubMed  CAS  Google Scholar 

  • Hentschel, U., K.M. Usher, and M.W. Taylor. 2006. Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 55, 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Hill, M., A. Hill, N. Lopez, and O. Harriott. 2006. Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar. Biol. 148, 1221–1230.

    Article  Google Scholar 

  • Imhoff, J.F. and R. Stöhr. 2003. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea, pp. 35–56. In W.E.G. Müller (ed.), Molecular marine biology of sponges, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Isaacs, L., J. Kan, L. Nguyen, P. Videau, M. Anderson, T. Wright, and R. Hill. 2009. Comparison of the bacterial communities of wild and captive sponge Clathria prolifera from the Chesapeake Bay. Mar. Biotechnol. 11, 758–770.

    Article  PubMed  CAS  Google Scholar 

  • Keane, T.M., C.J. Creevey, M.M. Pentony, T.J. Naughton, and J.O. McInerney. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29.

    Article  PubMed  CAS  Google Scholar 

  • Kulikova, T., P. Aldebert, N. Althorpe, W. Baker, K. Bates, P. Browne, A. van den Broek, and et al. 2004. The EMBL nucleotide sequence database. Nucleic Acids Res. 32, 27–30.

    Article  CAS  Google Scholar 

  • Loy, A., R. Arnold, P. Tischler, T. Rattei, M. Wagner, and M. Horn. 2008. probeCheck - a central resource for evaluating oligonucleotide probe coverage and specificity. Environ. Microbiol. 10, 2894–2898.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, and et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L. and G. Hinkle. 1992. Large symbiotic spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pillotina, pp. 3965–3978. In A. Balows, H.G. Trüper, M. Dworkin, W. Harder, and K.H. Schleifer (eds.), The prokaryotes, Springer, New York, N.Y., USA.

    Google Scholar 

  • Masuzawa, T., N. Takada, M. Kudeken, T. Fukui, Y. Yano, F. Ishiguro, Y. Kawamura, Y. Imai, and T. Ezaki. 2001. Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. Int. J. Syst. Evol. Microbiol. 51, 1817–1824.

    PubMed  CAS  Google Scholar 

  • Mohamed, N.M., J.J. Enticknap, J.E. Lohr, S.M. McIntosh, and R.T. Hill. 2008a. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl. Environ. Microbiol. 74, 1209–1222.

    Article  PubMed  CAS  Google Scholar 

  • Mohamed, N.M., V. Rao, M.T. Hamann, M. Kelly, and R.T. Hill. 2008b. Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl. Environ. Microbiol. 74, 4133–4143.

    Article  PubMed  CAS  Google Scholar 

  • Neulinger, S.C., A. Gärtner, J. Järnegren, M. Ludvigsen, K. Lochte, and W.C. Dullo. 2009. Tissue-associated “Candidatus Mycoplasma corallicola” and filamentous bacteria on the cold-water coral Lophelia pertusa (Scleractinia). Appl. Environ. Microbiol. 75, 1437–1444.

    Article  PubMed  CAS  Google Scholar 

  • Neulinger, S.C., J. Järnegren, M. Ludvigsen, K. Lochte, and W.C. Dullo. 2008. Phenotype-specific bacterial communities in the coldwater coral Lophelia pertusa (Scleractinia) and their implications for the coral’s nutrition, health, and distribution. Appl. Environ. Microbiol. 74, 7272–7285.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, H. 1921. Cristispira in North American shellfish. A note on a spirillum found in oysters. J. Exp. Med. 34, 295–315.

    Article  PubMed  CAS  Google Scholar 

  • Nordhoff, M., D. Taras, M. Macha, K. Tedin, H.J. Busse, and L.H. Wieler. 2005. Treponema berlinense sp. nov. and Treponema porcinum sp. nov., novel spirochaetes isolated from porcine faeces. Int. J. Syst. Evol. Microbiol. 55, 1675–1680.

    Article  PubMed  CAS  Google Scholar 

  • Pruesse, E., C. Quast, K. Knittel, B.M. Fuchs, W. Ludwig, J. Peplies, and F.O. Glöckner. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer, A., R. Gadkari, C.D. Reeves, F. Ibrahim, E.F. DeLong, and C.R. Hutchinson. 2005. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840–4849.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E. and J. Ebers. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33, 152–155.

    Google Scholar 

  • Taylor, M.W., R. Radax, D. Steger, and M. Wagner. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. R. 71, 295–347.

    Article  CAS  Google Scholar 

  • Thiel, V., S. Leininger, R. Schmaljohann, F. Brümmer, and J.F. Imhoff. 2007a. Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb. Ecol. 54, 101–111.

    Article  PubMed  Google Scholar 

  • Thiel, V., S.C. Neulinger, T. Staufenberger, R. Schmaljohann, and J.F. Imhoff. 2007b. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol. Ecol. 59, 47–63.

    Article  PubMed  CAS  Google Scholar 

  • Thoms, C., M. Horn, M. Wagner, U. Hentschel, and P. Proksch. 2003. Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar. Biol. 142, 685–692.

    CAS  Google Scholar 

  • Vacelet, J., N. Boury-Esnault, L. De Vos, and C. Donadey. 1989. Comparative study of the choanosome of Porifera: II. The keratose sponges. J. Morphol. 201, 119–129.

    Article  Google Scholar 

  • Wang, G.Y. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz, L.S. and D.R. Noguera. 2004. Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl. Environ. Microbiol. 70, 7126–7139.

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz, L.S., H.E. Okten, and D.R. Noguera. 2006. Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl. Environ. Microbiol. 72, 733–744.

    Article  PubMed  CAS  Google Scholar 

  • Zhilina, T.N., G.A. Zavarzin, F. Rainey, V.V. Kevbrin, N.A. Kostrikina, and A.M. Lysenko. 1996. Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the continental soda lakes in Central Asia and the East African Rift. Int. J. Syst. Bacteriol. 46, 305–312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. Imhoff.

Additional information

Supplemental material for this article may be found at http://www.springer.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neulinger, S.C., Stöhr, R., Thiel, V. et al. New phylogenetic lineages of the Spirochaetes phylum associated with Clathrina species (Porifera). J Microbiol. 48, 411–418 (2010). https://doi.org/10.1007/s12275-010-0017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0017-x

Keywords

Navigation