Skip to main content
Log in

Rapid tissue reduction and recovery in the sponge Aplysinella sp.

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We observed a pronounced, yet reversible tissue reduction in the tropical sponge Aplysinella sp. under non-experimental conditions in its natural habitat, after transfer into seawater tanks, as well as after transplantation from deep to shallow water in the field. Tissue reduction resulted in the formation of small “reduction bodies” tightly attached to the sponge skeleton. Although volume loss and gain were substantial, both tissue reduction and regeneration were often remarkably rapid, occurring within few hours. Microscopic analysis of the reduction bodies revealed morphological similarities to previously described sponge primmorphs, with densely packed archaeocytes and spherulous cells enclosed by a thin layer of epithelial-like cells. Denaturing gradient gel electrophoresis (DGGE) revealed pronounced changes in the sponge-associated microbial community upon tissue reduction during laboratory and field experiments and following changes in ambient conditions after transplantation in the field. Generally, the microbial community associated with this sponge proved less stable, less abundant, and less diverse than those of other, previously investigated Verongid sponges. However, one single phylotype was consistently present in DGGE profiles of Aplysinella sp. This phylotype clustered with γ-proteobacterial sequences found previously in other sponge species of different taxonomic affiliations and geographic provenances, as well as in sponge larvae. No apparent changes in the total secondary metabolite content (per dry weight) occurred in Aplysinella sp. upon tissue reduction; however, comparative analysis of intact and reduced tissue suggested changes in the concentrations of two minor compounds. Besides being ecologically interesting, the tissue reduction phenomenon in Aplysinella sp. provides an experimentally manipulable system for studies on sponge/microbe symbioses. Moreover, it may prove useful as a model system to investigate molecular mechanisms of basic Metazoan traits in vivo, complementing the in vitro sponge primmorph system currently used in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgments

LC/MS analyses were conducted by A. Grube (Alfred Wegener Institute, Bremerhaven, Germany). We thank N. J. de Voogd (National Museum of Natural History in Leiden) for advice on the taxonomy of the sponge species studied. M. Taylor and an anonymous reviewer gave valuable comments on the manuscript. C. Thoms gratefully acknowledges support with a Fedodor Lynen Fellowship and a “Rückkehrstipendium” from the Alexander von Humboldt Foundation. This research was supported by NIH MBRS SCORE grant SO6-GM-44796 and NCI grant 5U56CA096278 to P. J. Schupp and BMBF BiotecMarin grant# 03F0414E to U. Hentschel. This is University of Guam Marine Laboratory contribution number 616. The experiments of this study comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Thoms or Peter J. Schupp.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoms, C., Hentschel, U., Schmitt, S. et al. Rapid tissue reduction and recovery in the sponge Aplysinella sp.. Mar Biol 156, 141–153 (2008). https://doi.org/10.1007/s00227-008-1071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1071-3

Keywords

Navigation