Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Maintenance of B-cell memory by long-lived cells generated from proliferating precursors

Abstract

A BASIC feature of T-cell dependent antibody responses is the generation of memory: on a second contact with an antigen a secondary response is produced in which somatically mutated antibodies with increased affinity are synthesized1. Memory can persist for long periods of time. This has classically been ascribed to the generation of long-lived memory B cells2,3. However, it is also possible that persisting antigen, on which memory may depend4, maintains a population of cycling memory cells under continuous selection5 or continuously recruits newly generated B cells into the memory B-cell compartment6. To discriminate between these mechanisms we have now directly analysed the proliferative activity in the memory B-cell compartment of the mouse by measuring bromodeoxyuridine incorporation in vivo. We show that after an initial phase of extensive proliferation after primary immunization, memory cells can persist in the organism for extended periods of time in the absence of cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kocks, C. & Rajewsky, K. A. Rev. Immun. 7, 537–559 (1989).

    Article  CAS  Google Scholar 

  2. Gowans, J. L. & Uhr, J. W. J. exp. Med. 124, 1017–1030 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Strober, S. J. Immun. 117, 1288–1294 (1976).

    CAS  PubMed  Google Scholar 

  4. Gray, D. & Skarvall, H. Nature 336, 70–73 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gray, D., MacLennan, I. C. M. & Lane, P. J. L. Eur. J. Immun. 16, 641–648 (1986).

    Article  CAS  Google Scholar 

  6. Colle, J.-H., Truffa-Bacchi, P. & Freitas, A. A. Eur. J. Immun. 18, 1307–1314 (1988).

    Article  CAS  Google Scholar 

  7. Hayakawa, K., Ishii, R., Yamasaki, K., Kishimoto, T. & Hardy, R. R. Proc. natn. Acad. Sci. U.S.A. 84, 1379–1383 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Förster, I. & Rajewsky, K. Proc. natn. Acad. Sci. U.S.A., 87, 4781–4784 (1990).

    Article  ADS  Google Scholar 

  9. Förster, I. Vieira, P. & Rajewsky, K. Int. Immun. 4, 321–331 (1989).

    Article  Google Scholar 

  10. Miltenyi, S., Müller, W., Weichel, W. & Radbruch, A. Cytometry 11, 231–238 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Nieuwenhuis, P. & Opstelten, D. Am. J. Anat. 178, 421–435 (1984).

    Article  Google Scholar 

  12. MacLennan, I. C. M. & Gray, D. Immunol. Rev. 91, 61–85 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Goronzy, J., Weynand, C. M. & Fathman, C. G. J. exp. Med. 164, 911–925 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Vieira, P. & Rajewsky, K. Int. Immun. (in the press). (update ?)

  15. Tew, J. G. & Mandel, T. E. Immunology 37, 69–76 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Celada, F. J. exp. Med. 124, 1–14 (1967).

    Article  Google Scholar 

  17. Askonas, B. A., Cunningham, A. J., Kreth, H. W., Roelants, G. E., Williamson, A. R. Eur. J. Immun. 2, 494–498 (1972).

    Article  CAS  Google Scholar 

  18. Dialynas, D. P. et al. J. Immun. 131, 2445–2451 (1983).

    CAS  PubMed  Google Scholar 

  19. Schüppel, R., Wilke, J. & Weiler, E. Eur. J. Immun. 17, 739–741 (1987).

    Article  Google Scholar 

  20. Nishikawa, S. I., Sasaki, Y., Kina, T., Amagai, T. & Katsura, Y. Immunogenetics 23, 137–139 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Oi, V. T. & Herzenberg, L. A. Molec. Immun. 16, 1005–1017 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Marshak-Rothstein, A. et al. J. Immun. 122, 2491–2497 (1979).

    CAS  PubMed  Google Scholar 

  23. Coffman, R. Immunol. Rev. 69, 5–23 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Khaffan, H., Abuknesha, R., Raud-Weaver, M., Price, R. G. & Robinson, D. Histochem. J. 18, 497–499 (1986).

    Article  Google Scholar 

  25. Gonchoroff, N. J., Greipp, P. R., Kyle, R. A. & Katzmann, J. A. Cytometry 6, 506–512 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Gonchoroff, N. J. et al. J. Immunol. Meth. 93, 97–101 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schittek, B., Rajewsky, K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346, 749–751 (1990). https://doi.org/10.1038/346749a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346749a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing