Skip to main content
Log in

Autonomic neurotoxicity of jellyfish and marine animal venoms

  • Review Paper
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Venoms and poisons of jellyfish and other marien animals can induce damage to the human nervous and circulatory systems. Clues to the pathogenesis and clinical manifestations of these lesions can be obtained from data of human envenomations and animal experimentation. Because many investigators are unaware that marine animal venoms have autonomic actions, this paper aims to elucidate the broad antagonistic or toxic effects these compounds have on the autonomic nervous system. Marine venoms can affect ion transport of particularly sodium and calcium, induce channels or pores in neural and muscular cellular membranes, alter intracellular membranes of organelles and release mediators of inflammation. The box jellyfish, particularlyChironex fleckeri, in the Indo-Pacific region, is the world's most venomous marine animal and is responsible for autonomic disorders in patients. The symptoms induced by these venoms are vasospasm, cardiac irregularities, peripheral neuropathy, aphonia, ophthalmic abnormalities and parasympathetic dysautonomia. Cases of Irukandji syndrome, caused by the jellyfishCarukia barnesi, have symptoms that mimic excessive catecholamine release. Coelenterate venoms can also target the myocardium, Purkinje fiber, A-V node or aortic ring. Actions on nerves, as well as skeletal, smooth or cardiac muscle occur. Recent studies indicate that the hepatic P-450 enzyme family may be injured by these compounds. The multiplicity of these venom activities means that a thorough understanding of the sting pathogenesis will be essential in devising effective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neeman I, Calton GJ, Burnett JW. Cytotoxicity and dermonecrosis of sea nettle (Chrysaora quinquecirrha) venom.Toxicon 1980;18:55–64.

    Google Scholar 

  2. Burnett JW, Goldner R. The effect of sea nettle (Chrysaora quinquecirrha) nematocyst toxin on the rat cardiovascular system.Proc Soc Exp Biol Med 1969;132:353–356.

    Google Scholar 

  3. Warnick JE, Weinrich D, Burnett JW. Sea nettle (Chrysaora quinquecirrha) toxin on electrogenic and chemosensitive properties of nerve and muscleToxicon 1981;19:361–371.

    Google Scholar 

  4. Long KO, Burnett JW. Isolation, characterization, and comparison of hemolytic peptides in nematocyst venoms of two species of jellyfish (Chrysaora quinquecirrha andCyanea capillata).Comp Biochem Physiol 1989;94B:641–646.

    Google Scholar 

  5. Dubois JM, Tanguy J, Burnett JW. Ionic channels induced by sea nettle toxin in the nodal membrane.Biophys J 1983;42:119–202.

    Google Scholar 

  6. Cobbs CS, Drzymala RE, Shamoo AE et al., Sea nettle (Chrysaora quinquecirrha) lethal factor: Effect on black lipid membranes.Toxicon 1983;21:558–561.

    Google Scholar 

  7. Burnett JW, Calton GJ. Response of the box-jellyfish (Chironex fleckeri) cardiotoxin to intravenous administration of verapamil.Med J Aust 1983;2:192–194.

    Google Scholar 

  8. Burnett JW, Gean CJ, Calton GJ, et al. The effect of verapamil on the cardiotoxic activity of Portuguese man-o'war (Physalia physalis) and sea nettle (Chrysaora quinquecirrha) venoms.Toxicon 1985;23:681–689.

    Google Scholar 

  9. Lin WW, Lee CY, Burnett JW. Effect of sea nettle (Chrysaora quinquecirrha) venom on isolated rat aorta.Toxicon 1988;26:1209–1212.

    Google Scholar 

  10. Burnett JW, Othman IB, Endean R et al. Verapamil potentiation ofChironex (box-jellyfish) antivenom.Toxicon 1990;28:242–244.

    Google Scholar 

  11. Muhvich KH, Sengottuvelu S, Manson PN et al. Pathophysiology sea nettle (Chrysaora quinquecirrha), envenomation in a rat model and the effects of hyperbaric oxygen and verapamil treatment.Toxicon 1991;229:857–866.

    Google Scholar 

  12. Halstead BW.Poisonous and venomous marine animals of the world, Vol. I. Washington, DC: U.S. Government Printing House; 1965.

    Google Scholar 

  13. Mustafa MR, White E, Hongo E, Othman I, Orchard CH. The mechanism underlying the cardiac effect of the toxin from the jellyfishChironex fleckeri.Toxicol Applied Pharm 1995;133:196–202.

    Google Scholar 

  14. Kleinhaus AL, Cranefield PF, Burnett JW. The effects on canine cardiac Purkinje fibers ofChrysaora quinquecirrha (Sea nettle) toxin.Toxicon 1973;11:341–349.

    Google Scholar 

  15. Burnett JW, Calton GJ. The enzymatic content of sea nettle and Portuguese man-o'war toxin.Comp Biochem Physiol 1974;47B:815–820.

    Google Scholar 

  16. Burnett JW, Calton GJ, Meir H et al. Mediators present in the nematocyst venoms of the sea nettle, sea wasp and Portuguese man-o'war.Comp Biochem Physiol 1975;51C;153–156.

    Google Scholar 

  17. Hartman KR, Calton GJ, Burnett JW. A comparison of the kinin-like factor in the sea nettle fishing and mesenteric tentacles.Comp Biochem Physiol 1981;68C:235–238.

    Google Scholar 

  18. Weinreich D. Cellular mechanisms of inflammatory mediators acting on vagal sensory nerve excitability.Pulmonary Pharmacology 1995;8:173–179.

    Google Scholar 

  19. Garcia PJ, Schein RMH, Burnett JW. Fulminant hepatic failure from a sea anemone sting.Ann Int Med 1994;120:665–666.

    Google Scholar 

  20. Houck HE, Lipsky MM, Marzella L et al. Toxicity of sea nettle (Chrysaora quinquecirrha) fishing tentacle nematocyst in cultured rat hepatocytes.Toxicon 1996;34:771–778.

    Google Scholar 

  21. Eldofrawi AT, Cao CJ, Burnett JWet al. Cytotoxicity of sea nettle toxin to human liver cells and the protective effect of Vx. Presented at the Science Conference of Biological Defense Research, Aberdeen, MD, 19–20 November 1995.

  22. Calton GJ, Burnett JW. The purification of Portuguese man-of-war nematocyst toxins by gel diffusion.Comp Gen Pharm 1973;4:267–270.

    Google Scholar 

  23. Burnett JW, Stone JH, Pierce Jr. LH et al. A physical and chemical study of sea nettle nematocysts and their toxin.J Invest Dermat;1968;51:330–336.

    Google Scholar 

  24. Fowler JC, Greene R, Weinreich D. Two calcium-sensitive spike after-hyperpolarizations in visceral sensory neurones of the rabbit.J Physiol 1985;365:59–75.

    Google Scholar 

  25. Sah P. Ca2+-activated K+ currents in neurons: types, physiological roles and modulation.Trends Neurosci. 1996;19:150–154.

    Google Scholar 

  26. Williamson JA, Burnett JW, Fenner PJ et al. Acute regional vascular insufficiency after jellyfish envenomation.Med J Aust 1988;149:698–701.

    Google Scholar 

  27. Pratap Chand R, Selliah K. Reversible parasympathetic dysautonomia following stinging attributed to the box jellyfish.Aust N Z J Med 1984;14:673–675.

    Google Scholar 

  28. Glasser DB, Moell MJ, Burnett JW et al. Ocular jellyfish stings.Ophthalmology 1992;99:1414–1418.

    Google Scholar 

  29. Burnett HW, Burnett JW. Prolonged blurred vision following coelenterate envenomation.Toxicon 1990;28:731–733.

    Google Scholar 

  30. Flecker H. ‘Irukandji’ sting to north Queensland bathers without production of wheals but with severe general symptomsMed J Aust 1952; 189–191.

  31. Barnes JH. Cause and effect in ‘Irukandji’ stingings.Med J Aust 1964;1:897–904.

    Google Scholar 

  32. Williamson JA. ‘Irukandji’ syndrome or decompression sickness or cerebral arterial gas embolism? A different diagnostic trap for practitioners of diving medicine in north Queensland.South Pacific Underwater Medicine Society (SPUMS) J 1985;15:38–39.

    Google Scholar 

  33. Fenner PJ, Williamson JA, Burnett JW et al. The ‘Irukandji’; syndrome and acute pulmonary oedema.Med J Aust 1988;149:150–156.

    Google Scholar 

  34. Martin C, Audrey I. Cardiac failure following Irukandji envenomation.Med J Aust 1990;153:164–166.

    Google Scholar 

  35. Fenner PJ, Williamson JA, Callanan V et al. Further understanding of, and a new treatment for ‘Irukandji’ (Carukia barnesi) stings.Med J Aust 1980;45:569–574.

    Google Scholar 

  36. Voorhess ML. Adrenal medulla, sympathetic nervous system, and multiple endocrine adenomatosis. In:Pediatrics. 17th ed. Rudolph AM, Hoffman J.I.E., Axelrod S (editors). Norwalk, CN: Appleton-Century-Crofts; 1982. pp. 1509–1517.

    Google Scholar 

  37. Burnett JW, Williamson JA, Fenner PJ. Mononeuritis multiplex after coelenterate sting.Med J Australia 1994;161:321–322.

    Google Scholar 

  38. Williamson JA, Fenner PJ, Burnett JW et al.Venomous & Poisonous Marine Animals: A Medical and Biological Handbook, Sydney: University of New South Wales and Surf Life Saving Queensland; 1996.

    Google Scholar 

  39. Mingliang Z. Study on jellyfishStomolphus nomurai stings on Beidehe.Nat Med J China 1988;68:499.

    Google Scholar 

  40. Walker SM, Cousins NJ. Complex regional pain syndromes including ‘reflex sympathetic dystrophy causalgia’.Anaesth Intens Care 1997;25:113–125.

    Google Scholar 

  41. Burnett JW, Hepper KP, Aurelian L. Lymphokine activity in coelenterate envenomation.Toxicon 1986;24:104–107.

    Google Scholar 

  42. Burnett JW, Calton GJ. Recurrent eruption following a solitary envenomation by the cnidarianStomolphus meleagris.Toxicon 1985;23:1010–1014.

    Google Scholar 

  43. Burnett JW, Calton GJ. Pharmacological effects of various venoms on cutaneous capillary leakage.Toxicon 1986;24:614–617.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnett, J.W., Weinrich, D., Williamson, J.A. et al. Autonomic neurotoxicity of jellyfish and marine animal venoms. Clinical Autonomic Research 8, 125–130 (1998). https://doi.org/10.1007/BF02267823

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02267823

Keywords

Navigation