Skip to main content
Log in

Longitudinal waves in nonlinear viscoelastic rods under initial axial stress

Longitudinalwellen in axial vorgespannten nichtlinear-viskoelastischen Stäben

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Longitudianal wave propagation in a semi-infinite rod is considered, where the medium is nonlinear viscoelastic and under constant initial axial stress, i.e., the rod is undergoing axial creep deformation. The deformation gradient is assumed to be infinitesimal, but the deformation itself may be finite. The constitutive law is taken with stress power functions in the elastic, transient creep and steady creep terms. A wave is generated by a step input in velocity or stress at one end of the rod. It is assumed that the initial stress is much greater than the increment of stress generated by the impact and a perturbation technique is employed. Closed form perturbation stress solutions are obtained for five nonlinear viscoelastic models. Numerical examples are given and discussed.

Zusammenfassung

Es wird die Ausbreitung von Longitudinalwellen in einem halbunendlichen Stab betrachtet. Das Material ist nichtlinear viskoelastisch und befindet sich unter konstanter axialer Anfangsspannung, d. h., der Stab erleidet eine axiale Kriechdeformation. Der Deformationsgradient wird infinitesimal klein angenommen, die Deformation selbst kann aber endlich sein. Die Materialgleichung enthält eine Spannungs-Potenzfunktion im elastischen Teil sowie instationäre und stationäre Kriechanteile. Die Welle wird durch eine Stufenfunktion in der Geschwindigkeit oder Spannung an einem Ende des Stabes erzeugt. Die Anfangsspannung wird groß gegenüber der stoßartig aufgebrachten Spannung angenommen. Zur Lösung wird eine Störungsmethode verwendet. Für fünf nichtlinear viskoelastische Modelle werden geschlossene Lösungen für die Störspannungen erhalten. Numerische Beispiele werden angegeben und diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christescu, N.: On the Propagation of Elastic-Plastic Waves in Metallic Rods. Bull. Acad. Pol. Sci.,4, No. 11, 129 (1963).

    Google Scholar 

  2. Mercado, E. J.: Stress Propagation in Non-linear Viscoelastic Materials. A thesis submitted to the Department of Geology, Rensselaer Polytechnic Institute, March 1963.

  3. Lubliner, J.: A Generalized Theory of Strain-rate-dependent Plastic Wave Propagation in Bars. J. Mech. Phys. Solids,1, No. 12, 59 (1964).

    Google Scholar 

  4. Shaw, R. P. andF. A. Cozzarelli: Stress Relaxation at Wave Fronts in One-Dimensional Media Described by Nonlinear Viscoelastic Models. Int. J. of Nonlinear Mech, 5, No. 2, 171 (1970).

    Google Scholar 

  5. Brillouin, L.: Sur les tensions de radiation. Ann Phys.4, 1925. Also, Tensors in Mechanics and Elasticity, Academic Press, 1964.

  6. Biot, M. A.: The Influence of Initial Stress on Elastic Waves. J. Appl. Phys.,II, 522 (1940).

    Google Scholar 

  7. Tang, S.: Wave Propagation in Initially-Stressed Elastic Solids. Acta Mech.4, 92 (1967).

    Google Scholar 

  8. Tang, S.: Plane Waves in A Solid Undergoing Creep Deformation 6th Ann. Meeting of Soc. of Eng. Sci., Princeton Univ., New Jersey, Nov. 11–13, 1968. Proc.published by Gordon and Breach, New York, 1969–1970.

    Google Scholar 

  9. Novozhilov, V. V.: Foundations of the Non-linear Theory of Elasticity. Graylock Press, 1953.

  10. Bolotin, V. V.: Nonconservative Problems of the Theory of Elastic Stability. Macmillan, (Eng. Transl.), 1963.

  11. Morrison, J. A.: Wave Propagation in Rods of Voigt Material and Visco-Elastic Materials with Three-Parameter Models. J. Appl. Math.14, (1956) 153.

    Google Scholar 

  12. Onat, E. T. andT. T. Wang: The Effect of Incremental Loading on Creep Behavior of Metals. IUTAM, Creep in Structures, Springer-Verlag, 1962, p. 125.

  13. Bodner, S. R. andA. Berkovits: Incremental Behavior in Creep Buckling Problems. 12th Int. Cong. of Appl. Mech., Stanford Univ., Calif., Aug. 26–31, 1968.

  14. Pao, Y. andJ. Marin: Analytical Theory of The Creep Deformation of Materials. J. Appl. Mech.,20, 245 (1953).

    Google Scholar 

  15. Marin, J. andJ. E. Griffith: Creep Relaxation of Plexiglass II-A for Simple Stresses. J. Eng. Mech. Div., Amer. Soc. of Civil Eng., Vol. 82, No. E. M. 3, July 1956.

  16. Weissmann, G. F., Y. H. Pao andJ. Marin: Prediction of Creep Under Fluctuating Stress and Damping from Creep under Constant Stress. Proc. Sec. U. S. Congr. of Appl. Mech., 1954, p. 577.

  17. Cozzarelli, F. A. andS. Tang: Longitudinal Waves in Nonlinear Viscoelastic Rods Under Initial Axial Stress. D.I.S.R. Report No. 25, State Univ. of New York at Buffalo, Feb. 1969.

  18. Abramowitz, M. andI. A. Stegun ed.: Handbook of Mathematical Functions with Formulas, Graphys, and Mathematical Tables, Chapter 29. U.S. Dept. of Comm., June 1964.

  19. Lee, E. H. andJ. A. Morrison: A Comparison of the Propagation of Longitudinal Waves in Rods of Viscoelastic Materials. J. Polymer Sci.,19, 93 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

This research was supported in part (at Buffalo) by the Office of Naval Research under Contract No. Nonr. 4449 (00).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cozzarelli, F.A., Tang, S. Longitudinal waves in nonlinear viscoelastic rods under initial axial stress. Acta Mechanica 10, 277–300 (1970). https://doi.org/10.1007/BF01175884

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01175884

Keywords

Navigation