Skip to main content

Advertisement

Log in

The human tyrosine aminotransferase gene: characterization of restriction fragment length polymorphisms and haplotype analysis in a family with tyrosinemia type II

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Deficiency in hepatic tyrosine aminotransferase (TAT) causes tyrosinemia type II, an autosomal recessively inherited disorder. Using a TAT cosmid clone, we have identified an MspI restriction fragment length polymorphism (RFLP) 5′ to the TAT gene, with allele frequencies of 0.63 and 0.37. Analysis of the cloned maternal and paternal TAT alleles from patient with tyrosinemia type II led to the identification of a HaeIII RFLP at the 3′ end of the TAT gene, with allele frequencies of 0.94 and 0.06. The two RFLPs are 27 kb apart and in no allelic association. From haplotype frequencies, a polymorphism information content (PIC) value of 0.44 was obtained. The two RFLPs have allowed the unambiguous identification of the mutant TAT alleles in the patient's pedigree by haplotype analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson SM, Räihä NCR, Ohisalo JJ (1980) Tyrosine aminotransferase activity in human fetal liver. J Dev Physiol 2:17–27

    Google Scholar 

  • Baas F, Bikker H, Van Ommen GJB, Vijlder JJM de (1984) Unusual scarcity of restriction site polymorphism in the human thyroglobulin gene. A linkage study suggesting autosomal dominance of a defective thyroglobulin allele. Hum Genet 67:301–305

    Google Scholar 

  • Berry HK (1976) Tyrosinemias. In: Ampola M (ed) Clinics in perinatology. Early detection and management of inborn errors. Saunders, Philadelphia, pp 31–40

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    Google Scholar 

  • Buist NRM, Kennaway NG, Fellman JH (1985) Tyrosinemia type II: hepatic cytosol tyrosine aminotransferase deficiency (the “Richner-Hanhart syndrome”). In: Bickel H, Wachtel U (eds) Inherited diseases of amino acid metabolism. Thieme, Stuttgart New York, pp 203–235

    Google Scholar 

  • Fellman JH, Vanbellinghen PJ, Jones RT, Koler RD (1969) Soluble and mitochondrial forms of tyrosine aminotransferase. Relationship to human tyrosinemia. Biochemistry 8:615–622

    Google Scholar 

  • Gluecksohn-Waelsch S (1979) Genetic control of morphogenetic and biochemical differentiation: lethal albino deletions in the mouse. Cell 16:225–237

    Google Scholar 

  • Goldsmith LA (1983) Tyrosinemia and related disorders. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 287–299

    Google Scholar 

  • Goldsmith LA, Thorpe JM, Roe CR (1979) Hepatic enzymes of tyrosine metabolism in tyrosinemia II. J Invest Dermatol 73:530–532

    Google Scholar 

  • Kida K, Takahashi M, Fujisawa Y, Matsuda H, Machino H, Miki Y (1982) Hepatic tyrosine aminotransferase in tyrosinemia type II. J Inherited Metab Dis 5:229–230

    Google Scholar 

  • Lalley PA, McKusick VA (1985) Report of the committee on comparative mapping. (8th International Workshop on Human Gene Mapping. Cytogenet Cell Genet 40:536–566

    Google Scholar 

  • Lemonnier F, Charpentier C, Odievre M, Larregue M, Lemonnier A (1979) Tyrosine aminotransferase isoenzyme deficiency. J Pediatr 94:931–932

    Google Scholar 

  • Müller G, Scherer G, Zentgraf H, Ruppert S, Herrmann B, Lehrach H, Schütz G (1985) Isolation, characterization and chromosomal mapping of the mouse tyrosine aminotransferase gene. J Mol Biol 184:367–373

    Google Scholar 

  • Natt E, Scherer G (1986) EMBL12, a new lambda replacement vector with sites for SalI, XbaI, BamHI, SstI and EcoRI. Nucleic Acids Res 14:7128

    Google Scholar 

  • Natt E, Kao FT, Terrenmeier R, Scherer G (1986) Assignment of the human tyrosine aminotransferase gene to chromosome 16. Hum Genet 72:225–228

    Google Scholar 

  • Natt E, Westphal EM, Toth-Fejel SE, Magenis RE, Buist NRM, Rettenmeier R, Scherer G (1987) Inherited and de novo deletion of the tyrosine aminotransferase gene locus at 16q22.1–q22.3 in a patient with tyrosinemia type II. Hum Genet 77:352–358

    Google Scholar 

  • Ott J (1985) A chi-square test to distinguish allelic association from other causes of phenotypic association between two loci. Genet Epidemiol 2:79–84

    Google Scholar 

  • Schmid W, Müller G, Schütz G, Gluecksohn-Waelsch S (1985) Deletions near the albino locus on chromosome 7 of the mouse affect the level of tyrosine aminotransferase mRNA. Proc Natl Acad Sci USA 82:2866–2869

    Google Scholar 

  • Tourian A, Sidbury JB (1983) Phenylketonuria and hyperphenylalaninemia. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 270–286

    Google Scholar 

  • Westphal EM, Burmeister M, Wienker TF, Lehrach H, Bender K, Scherer G (1987) Tyrosine aminotransferase and chymotrypsinogen B are linked to haptoglobin on human chromosome 16q: comparison of genetic and physical distances. Genomics 1:313–319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westphal, EM., Natt, E., Grimm, T. et al. The human tyrosine aminotransferase gene: characterization of restriction fragment length polymorphisms and haplotype analysis in a family with tyrosinemia type II. Hum Genet 79, 260–264 (1988). https://doi.org/10.1007/BF00366248

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366248

Keywords

Navigation