Skip to main content
Log in

Immunoblot using recombinant antigens derived from different genospecies of Borrelia burgdorferi sensu lato

  • Original Investigations
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Immunodominant proteins are variable in molecular and antigenic structure among different genospecies of Borrelia burgdorferi sensu lato. We have recently developed an immunoblot using five recombinant antigens: the chromosomal-encoded B. burgdorferi proteins p 100, the flagellin and an internal flagellin fragment thereof, and the plasmid-encoded outersurface proteins A (OspA) and C (OspC). In the present study the same antigens (derived from strain PKo, genospecies B. afzelii) were compared with the homologous recombinant proteins from strain B31 (genospecies B. burgdorferi sensu stricto) and with OspA, OspC and the internal flagellin fragment from strain PBi (genospecies B. garinii). Patients with neuroborreliosis (n=28) and patients with acrodermatitits chronica atrophicans (n=20) were investigated in the IgG immunoblot; the IgM immunoblot was performed only in patients with neuroborreliosis. There was a small increase in the detection rate of OspA-specific IgG or IgM antibodies using the different variants of recombinant OspA; however, OspA remained an insensitive antigen for antibody detection in Lyme borreliosis. The same was true to OspC-specific IgG antibodies. The sensitivity of OspC, which is the immunodominant antigen for IgM antibody detection, could not be increased using recombinant antigens derived from different strains. However, some sera which were negative in the recombinant immunoblot reacted with OspC in the conventional immunoblot using B. burgdorferi whole cell lysate as antigen. The most unexpected finding was the high degree of immunological heterogeneity of the internal flagellin fragments: IgG antibodies were detected in 18 of 48 patients using B31 fragments, in 25 of 48 using PKo fragments, in 23 of 48 using PBi fragments versus 33 of 48 when the three recombinant proteins were combined. PKo-derived fragments were more sensitive for antibody detection in patients with acrodermatitis chronica atrophicans, B31- and PBi-derived fragments for antibody detection in patients with neuroborreliosis. This is in agreement with the fact that isolates from patients with neuroborreliosis are predominantly belonging to the genospecies B. burgdorferi sensu stricto and B. garinii. For detection of IgM antibodies in sera from patients with neuroborreliosis, recombinant internal fragments derived from strains B31 and PBi were more sensitive than the PKo-derived fragment. The best discrimination between neuroborreliosis sera and control sera was achieved when the IgM blot was performed using recombinant internal flagellin fragments derived from strains PKo and PBi and OspC derived from B31 or PKo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguero-Rosenfeld ME, Nowakowski J, McKenna DF, Carbonaro CA, Wormser GP (1993) Serodiagnosis in early Lyme disease. J Clin Microbiol 31:3090–3095

    Google Scholar 

  2. Assous MV, Postic D, Paul G, Nevot P, Baranton G (1993) Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur J Clin Microbiol Infect Dis 12:261–268

    Google Scholar 

  3. Baranton G, Postic D, Saint Girons I, Boerlin P, Piffaretti J-C, Assous M, Grimont PAD (1992) Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J System Bacteriol 42:378–383

    Google Scholar 

  4. Barbour AG, Garon CF (1987) Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237:409–411

    Google Scholar 

  5. Barbour AG, Schrumpf ME (1986) Polymorphisms of major surface proteins of Borrelia burgdorferi. Zentralbl Bakteriol Mikrobiol Hyg 263:83–91

    Google Scholar 

  6. Bergström S, Bundoc VG, Barbour AG (1989) Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 3:479–486

    Google Scholar 

  7. Berland R, Fikrig E, Rahn D, Hardin J, Flavell RA (1991) Molecular characterization of the humoral response to the 41-kilodalton flagellar antigen of Borrelia burgdorferi, the Lyme disease agent. Infect Immun 59:3531–3535

    Google Scholar 

  8. Bruckbauer H, Preac-Mursic V, Fuchs R, Wilske B (1992) Cross-reactive proteins of Borrelia burgdorferi. Eur J Clin Microbiol Infect Dis 11:1–9

    Google Scholar 

  9. Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwald E, Davis JP (1982) Lyme disease — A tick-borne spirochetosis? Science 216:1317–1319

    Google Scholar 

  10. Canica MM, Nato F, Du Merle L, Mazie JC, Baranton G, Postic D (1993) Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis 25:441–448

    Google Scholar 

  11. Coleman JL, Benach JL (1987) Isolation of antigenic components from the Lyme disease spirochete: their role in early diagnosis. J Infect Dis 155:756–765

    Google Scholar 

  12. Fawcett PT, Rose C, Gibney KN, Chase CA, Kiehl B, Doughty RA (1993) Detection of antibodies to the recombinant P39 protein of Borrelia burgdorferi using enzyme immunoassay and immunoblotting. J Rheumatol 20:734–738

    Google Scholar 

  13. Fikrig E, Huguenel ED, Berland R, Rahn DW, Hardin JA, Flavell RA (1992) Serologic diagnosis of Lyme disease using recombinant outer surface proteins A and B and flagellin. J Infect Dis 165:1127–32

    Google Scholar 

  14. Fikrig E, Berland R, Chen M, Williams S, Sigal LH, Flavell RA (1993) Serologic response to the Borrelia burgdorferi flagellin demonstrates an epitope common to a neuroblastoma cell line. Proc Natl Acad Sci USA 90:183–187

    Google Scholar 

  15. Fuchs R, Jauris S, Lottspeich F, Preac-Mursic V, Wilske B, Soutschek E (1992) Molecular analysis and expression of a Borrelia burgdorferi gene encoding a 22 kDa protein (pC) in Escherichia coli. Mol Microbiol 6:503–509

    Google Scholar 

  16. Gaßmann GS, Kramer M, Göbel UB, Wallich R (1989) Nucleotide sequence of a gene encoding the B. burgdorferi flagellin. Nucleic Acids Res 17:3590

    Google Scholar 

  17. Gaßmann GS, Jacobs E, Deutzmann R, Göbel UB (1991) Analysis of the Borrelia burgdorferi GeHo fla gene and antigenic characterization of its gene product. J Bactereiol 173:1452–1459

    Google Scholar 

  18. Hansen K, Hindersson P, Pedersen NS (1988) Measurement of antibodies to the Borrelia burgdoreferi flagellum improves serodiagnosis in Lyme disease. J Clin Microbiol 26:338–346

    Google Scholar 

  19. Jauris-Heipke S, Fuchs R, Motz M, Preac-Mursic V, Schwab E, Soutschek E, Will G, Wilske B (1993) Genetic heterogeneity of the genes coding for the outer surface protein C (OspC) and the flagellin Borrelia burgdorferi. Med Microbiol Immunol 182:37–50

    Google Scholar 

  20. Jauris-Heipke S, Fuchs R, Lottspeich F, Preac-Mursic V, Soutschek E, Will G, Wilske B (1993) Molecular characterization of the p 100 gene of Borrelia burgdorferi strain PKo. FEMS Microbiol Lett 114:235–242

    Google Scholar 

  21. Jiang W, Luft BJ, Schubach W, Dattwyler RJ, Gorevic PD (1992) Mapping the major antigenic domains of the native flagellar antigen of Borrelia burgdorferi. J Clin Microbiol 30:1535–1540

    Google Scholar 

  22. Jonsson M, Noppa L, Barbour AG, Bergström S (1992) Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp operons of three isolates of different geographic origins. Infect Immun 60:1845–1853

    Google Scholar 

  23. Kaiser R, Rasiah C, Gassmann G, Vogt A, Luecking CH (1993) Intrathecal antibody synthesis in Lyme neuborreliosis: use of recombinant p41 and a 14-kDa flagellin fragment in ELISA. J Med Microbiol 39:290–297

    Google Scholar 

  24. Luft BJ, Mudri S, Jiang W, Dattwyler RJ, Gorevic PD, Fischer T, Munoz P, Dunn JJ, Schubach WH (1992) The 93-kilodalton protein of Borrelia burgdorferi: an immunodominant protoplasmic cylinder antigen. Infect Immun 60:4309–4321

    Google Scholar 

  25. Luft BJ, Dunn JJ, Dattwyler RJ, Gorgone G, Gorevic PD, Schubach WH (1993) Cross-reactive antigenic domains of the flagellin protein of Borrelia burgdorferi. Res Microbiol 144:251–257

    Google Scholar 

  26. Perng G-C, LeFebvre RB, Johnson R (1991) Further characterization of a potent immunogen and the chromosomal gene encoding it in the Lyme disease agent, Borrelia burgdorferi. Infect Immun 59:2070–2074

    Google Scholar 

  27. Picken RN (1992) Polymerase chain reaction primers and probes from flagellin gene sequences for specific detection of the agents of Lyme disease and North American relapsing fever. J Clin Microbiol 30:99–114

    Google Scholar 

  28. Preac-Mursic V, Wilske B, Reinhardt S (1991) Culture of Borrelia burgdorferi on six solid media. Eur J Microbiol Infect Dis 10:1076–1079

    Google Scholar 

  29. Rasiah C, Schlitz E, Reichert J, Vogt A (1992) Purification and characterization of a tryptic peptide of Borrelia burgdorferi flagellin, which reduces cross-reactivity in immunoblots and ELISA. J Gen Microbiol 138:147–154

    Google Scholar 

  30. Robinson JM, Pilot-Matias TJ, Pratt SD, Patel CB, Bevirt TS, Hunt JC (1993) Analysis of the humoral response to the flagellin protein of Borrelia burgdorferi: cloning of regions capable of differentiating Lyme disease from Syphilis. J Clin Microbiol 31:629–635

    Google Scholar 

  31. Sadziene A, Wilske B, Ferdows MS, Barbour AG (1993) The cryptic ospC gene of Borrelia burgdorferi B31 is located on a circular plasmid. Infect Immun 61:2192–2195

    Google Scholar 

  32. Schneider T, Lange R, Rönspeck W, Weigelt W, Kölmel HW (1992) Prognostic B-cell epitopes on the flagellar protein of Borrelia burgdorferi. Infect Immun 60:316–319

    Google Scholar 

  33. Schwartz I, Wormser GP, Schwartz JJ, Cooper D, Weissensee P, Gazumyan A, Zimmermann E, Goldberg NS, Bittker S, Campbell GL, Pavia CS (1992) Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions. J Clin Microbiol 30:3082–3088

    Google Scholar 

  34. Steere AC (1989) Medical progress — Lyme disease. N Engl J Med 321:586–596

    Google Scholar 

  35. Theisen M, Frederiksen B, Lebech A-M, Vuust J, Hansen K (1993) Polymorphism in OspC gene of Borrelia burgdorferi and immunoreactivity of OspC protein: implications for taxonomy and for use of OspC protein as a diagnostic antigen. J Clin Microbiol 31:2570–2576

    Google Scholar 

  36. Wilske B, Preac-Mursic V, Schierz G, Gueye W, Herzer P, Weber K (1988) Immunochemical analysis of the immune response in late manifestations of Lyme borreliosis. Zentralbl Bakteriol Mikrobiol Hyg [A] 267:549–558

    Google Scholar 

  37. Wilske B, Preac-Mursic V, Schierz G, Kühbeck R, Barbour AG, Kramer M (1988) Antigenic variability of Borrelia burgdorferi. Ann N Y Acad Sci 539:126–143

    Google Scholar 

  38. Wilske B, Preac-Mursic V, Schierz G, Liegl G, Gueye W (1989) Detection of IgM and IgG antibodies to Borrelia burgdorferi using different strains as antigen. Proceedings of the Lyme Borreliosis update Europe. Juni 2–4, Baden 1987. Zentralbl Bakteriol [Suppl] 18: 299–309

  39. Wilske B, Preac-Mursic V, Fuchs R, Bruckbauer H, Hofmann A, Zumstein G, Jauris S, Soutschek E, Motz M (1990) Immunodominant proteins of Borrelia burgdorferi; implications for improving serodiagnosis of Lyme borreliosis. In: Neu HC (ed) New antibacterial strategies. Churchill Livingstone, London, pp 47–63

    Google Scholar 

  40. Wilske B, Bader L, Pfister HW, Preac-Mursic V (1991) Diagnostik der Lyme-Neuroborreliose (Nachweis der intrathekalen Antikörperbildung). Fortschritte der Medizin 109:441–446

    Google Scholar 

  41. Wilske B, Preac-Mursic V, Göbel UB, Graf B, Jauris S, Soutschek E, Schwab E, Zumstein G (1993) An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol 31:340–350

    Google Scholar 

  42. Wilske B, Preac-Mursic V, Jauris S, Hofmann A, Pradel I, Soutschek E, Schwab E, Will G, Wanner G (1993) Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect Immun 61:2182–2191

    Google Scholar 

  43. Wilske B, Fingerle V, Herzer P, Hofmann A, Lehnert G, Peters H, Pfister H-W, Preac-Mursic V, Soutschek E, Weber K (1993) Recombinant immunoblot in the serodiagnosis of Lyme borreliosis. Med Microbiol Immunol 182:255–270

    Google Scholar 

  44. Zumstein G, Fuchs R, Hofmann A, Preac-Mursic V, Soutschek E, Wilske B (1992) Genetic polymorphism of the gene encoding the outer surface protein A (OspA) of Borrelia burgdorferi. Med Microbiol Immunol 181:57–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilske, B., Fingerle, V., Preac-Mursic, V. et al. Immunoblot using recombinant antigens derived from different genospecies of Borrelia burgdorferi sensu lato. Med Microbiol Immunol 183, 43–59 (1994). https://doi.org/10.1007/BF00193630

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193630

Keywords

Navigation