Skip to main content
Log in

Occurrence of pumpellyite in hydrothermally altered basalts from the Vema fracture zone (mid-Atlantic ridge)

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Metabasalts with abundant pumpellyite have been dredged in the Vema fracture zone, Atlantic ocean, and contain prehnite+pumpellyite±epidote+chlorite+white mica. The prehnite — pumpellyite association in these rocks differs from the prehnite-epidote association for most of the prehnite — pumpellyite facies metabasalts from the ocean crust described previously. The occurrence of pumpellyite is discussed in terms of temperature conditions, \(\mu _{H_2 O} \) and oxygen fugacity and the pumpellyiterich metabasalts are believed to be recrystallized by hydrothermal circulation of seawater at about 250° C under a very low pressure (<1 kb).

The bulk composition of the rocks demonstrates a strong chemical modification during hydrothermal metamorphism, similar to what is observed under greenschist facies conditions, except for potassium which can be uptaken from seawater by the rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumento F, Loncarevic B, Ross DI (1971) Hudson geotraverse: geology of the mid-Atlantic ridge at 45° N. Philos Trans R Soc London A, 268:623–650

    Google Scholar 

  • Boles JR, Coombs DS (1977) zeolite facies alteration of sandstones in southland syncline, New Zealand. Am J Sci 277:982–1012

    Google Scholar 

  • Bonatti E, Honnorez J, Kirst P, Radicati F (1975) Metagabbros from the Mid-Atlantic Ridge at 06° N: contact-hydrothermal-dynamic metamorphism beneath the axial valley. J Geol 83:61–78

    Google Scholar 

  • Bonatti E, Chermak A, Honnorez J (1979) Tectonic and igneous emplacement of crust in oceanic transform faults. In: Deep drilling results in the Atlantic ocean, M. Talwani Ed., Maurice Ewing series 2, Am Geophys Union, pp 239–248

  • Bostrom K, Petersen MNA (1969) The origin of aluminum ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geol 7:427–447

    Google Scholar 

  • Cann JR (1969) Spilites from the Carlsberg ridge, Indian Ocean. J Petrol 10:1–19

    Google Scholar 

  • Cann JR, Funnell B (1967) Palmer Ridge: a section through the upper part of the ocean crust. Nature 213:661–664

    Google Scholar 

  • Coombs DS, Horodyski RJ, Naylor RS (1970) Occurrence of prehnitepumpellyite facies in northern Maine. Am J Sci 268:142–156

    Google Scholar 

  • Coombs DS, Nakamura Y, Vuagnat M (1976) Pumpellyite-actinolite facies schists of the Taveyanne formation near Loèche, Valais, Switzerland. J Petrol 17:440–471

    Google Scholar 

  • Dymond J, Corliss JB, Heath GR, Field GW, Dasch EJ, Veeh HH (1973) Origin of metalliferous sediments from the Pacific ocean. Geol Soc Am Bull 84:3355–3372

    Google Scholar 

  • Evarts RC, Schiffman P (in review) Submarine hydrothermal metamorphism of the Del Puerto Ophiolite, California

  • Glassley WE (1975) Low variance phase relationships in a prehnitepumpellyite facies terrain. Lithos 8:69–76

    Google Scholar 

  • Hajash A (1975) Hydrothermal processes along mid-ocean ridges: an experimental investigation. Contrib Mineral Petrol 53:205–226

    Google Scholar 

  • Hart R (1973) A model for chemical exchange in the basalt-seawater system of oceanic layer II. Can J Earth sci 10:799–816

    Google Scholar 

  • Hashimoto M (1972) Reactions producing actinolite in basic metamorphic rocks. Lithos 5:19–31

    Google Scholar 

  • Hekinian R, Aumento F (1973) Rocks from the Gibbs fracture zone and the Minia Seamount near 53° N in the Atlantic ocean. Mar Geol 14:47–72

    Google Scholar 

  • Holdaway MJ (1972) Thermal stability of Al-Fe epidote as a function of \(f_{o_2 } \) and Fe content. Contrib Mineral Petrol 37:307–340

    Google Scholar 

  • Humphris SE, Thompson G (1978) Hydrothermal alteration of oceanic basalts by sea water. Geochim Cosmochim Acta 42:107–125

    Google Scholar 

  • Iwasaki M (1963) Metamorphic rocks of the Kotu-Bizan area, eastern Shikoku. J Fac Sci Tokyo Univ sec II: 1–90

    Google Scholar 

  • Jehl V (1975) Le métamorphisme et les fluides associés des roches océaniques de l'Atlantique nord. Thèse de Docteur-Ingénieur, Université de Nancy I

  • Kawashi Y (1975) Pumpellyite-actinolite and contiguous facies metamorphism in part of Upper Wakatipu district, South Island. New Zealand. NZJ Geol Geophys 18:401–441

    Google Scholar 

  • Kirst P (1976) Petrology of metamorphic rocks from the equatorial mid-Atlantic ridge and fracture zones. PhD thesis, University of Miami

  • Liou JG (1971a) Synthesis and stabilitiy relations of prehnite, Ca3Al2 Si3O10(OH)2. Am Mineral 56:507–531

    Google Scholar 

  • Liou JG (1971b) Analcime equilibria. Lithos 4:389–402

    Google Scholar 

  • Liou JG (1979) Zeolite facies metamorphism of basaltic rocks from the East Taïwan ophiolite. Am Mineral 64:1–14

    Google Scholar 

  • Liou JG, Ernst WG (1979) Oceanic ridge metamorphism of the East Taiwan ophiolite. Contrib Mineral Petrol 68:335–348

    Google Scholar 

  • Lister CRB (1972) On the thermal balance of a mid-ocean ridge. Geophys J R Astr Soc 39:575–635

    Google Scholar 

  • Melson WG, Van Andel TH (1966) Metamorphism in the mid-Atlantic ridge, 22° N latitude. Mar Geol 4:165–186

    Google Scholar 

  • Melson WG, Thompson G (1971) Petrology of a transform fault and adjacent ridge segments. Philos Trans R Soc London A 268:423–441

    Google Scholar 

  • Melson WG, Thompson G, Van Andel TH (1968) Volcanism and metamorphism in the mid-Atlantic ridge, 22° C latitude. J Geophys Res 75:5925–5941

    Google Scholar 

  • Miyashiro A, Seki Y (1958) Enlargement of the compositional field of epidote and piemontite with rising temperature. Am J Sci 256:423–430

    Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1971) Metamorphism on the mid-Atlantic ridge near 24 and 30° N. Philos Trans R Soc London A 268:589–603

    Google Scholar 

  • Mottl MJ, Holland HD (1978) Chemical exchange during hydrothermal alteration of basalt by seawater — I Experimental results for major and minor components of seawater. Geochim Cosmochim Acta 42:1103–1115

    Google Scholar 

  • Nitsch KH (1971) Stabilitätsbeziehungen von Prehnit- und Pumpellyit-haltigen Paragenesen. Contrib Mineral Petrol 30:240–260

    Google Scholar 

  • Passaglia E, Gottardi G (1973) Crystal chemistry and nomenclature of pumpellyites and jugoldites. Can Mineral 12:219–223

    Google Scholar 

  • Piper DZ (1973) Origin of metalliferous sediments from the East Pacific Rise. Earth Planet Sci Lett 19:75–82

    Google Scholar 

  • Rise Project Group (1980) East Pacific Rise: Hot springs and geophysical experiments. Science 207:1421–1433

    Google Scholar 

  • Rucklidge J, Gasparrini EL (1969) Electron microprobe analytical reduction EMPADR VII. Department of Geology, University of Toronto

  • Schiffman P, Liou JG (1977) Synthesis and stability relations of Mgpumpellyite. Proc 2nd Int Symp on Water-Rock Interaction, Strasbourg, France, pp 157–164

  • Seyfried WE Jr, Bischoff JL (1977) Hydrothermal transport of heavy metals by seawater: the role of seawater basalt ratio. Earth Planet Sci Lett 34:71–78

    Google Scholar 

  • Seyfried WE Jr, Mottl MJ, Bischoff JL (1978) Seawater/basalt ratio effects on the chemistry and mineralogy of spilites from the ocean floor. Nature 275:211–213

    Google Scholar 

  • Seyfried WE Jr, Bischoff JL (1979) Low temperature basalt alteration by seawater: an experimental study at 70° C and 150° C. Geochim Cosmochim Acta 43:1937–1947

    Google Scholar 

  • Spooner ETC, Fyfe WS (1973) sub-sea floor metamorphism, heat and mass transfer. Contrib Mineral Petrol 42:287–304

    Google Scholar 

  • Surdam RC (1969) Electron microprobe study of prehnite and pumpellyite from Karmutsen group, Vancouver Island, Britisch Columbia. Am Mineral 54:256–266

    Google Scholar 

  • Swanson SE, Schiffman P (1979) Textural evolution and metamorphism of pillow basalts from the Franciscan complex, western Marin county, California. Contrib Mineral Petrol 69:291–299

    Google Scholar 

  • Thompson AB (1971) Analcite-bearing equilibria at low temperatures. Am J Sci 271:79–92

    Google Scholar 

  • Tomasson J, Kristmannsdottir (1972) High temperature alteration minerals and thermal brines, Reykjanes; Iceland. Contrib Mineral Petrol 36:123–134

    Google Scholar 

  • Weiss RF, Lonsdale PF, Lupton JE, Bainbridge AE, Craig H (1977) Hydrothermal plumes in the Galapagos rift. Nature 267:600–603

    Google Scholar 

  • Williams DL, Von Hertzen RP, Sclater JG, Anderson RN (1974) The Galapagos spreading center: lithospheric cooling and hydrothermal circulation. Geophys J R Astron Soc 38:587–608

    Google Scholar 

  • Wolery TJ, Sleep NH (1976) Hydrothermal circulation and geochemical flux at mid-ocean ridges. J Geol 84:249–275

    Google Scholar 

  • Zen E-An (1974) Prehnite- and pumpellyite-bearing mineral assemblages, west side of Appalachian metamorphic belt, Pennsylvania to Newfoundland. J Petrol 15:197–242

    Google Scholar 

  • Zen E-An, Thompson AB (1974) low-grade regional metamorphism: mineral equilibrium relations. Ann Rev Earth Planet Sci 2:179–212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mevel, C. Occurrence of pumpellyite in hydrothermally altered basalts from the Vema fracture zone (mid-Atlantic ridge). Contr. Mineral. and Petrol. 76, 386–393 (1981). https://doi.org/10.1007/BF00371480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371480

Keywords

Navigation