Skip to main content
Log in

Electron microscopic investigation of mitochondrial DNA fromChenopodium album (L.)

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

DNA molecules from mitochondria of whole plants and a suspension culture ofChenopodium album were prepared, by a gentle method, for analysis by electron microscopy. Mitochondrial (mt) DNA preparations from both sources contained mostly linear molecules of variable sizes (with the majority of molecules ranging from 40 to 160 kb). Open circular molecules with contour lengths corresponding to 0.3–183 kb represented 23–26% of all mtDNA molecules in the preparations from the suspension culture and 13–15% in the preparations from whole plants. More than 90% of the circular DNA was smaller than 30 kb. Virtually no size classes of the mtDNA molecules could be identified, and circular or linear molecules of the genome size (about 270 kb) were not observed. In contrast, plastid (pt) DNA preparations from the suspension culture contained linear and circular molecules falling into size classes corresponding to monomers, dimers and trimers of the chromosome. About 23% of the ptDNA molecules were circular. DNA preparations from mitochondria contained a higher percentage of more complex molecules (rosette-like structures, catenate-like molecules) than preparations of ptDNA. Sigma-like molecules (putative intermediates of rollingcircle replication) were observed in mtDNA preparations from the suspension culture (18% of the circles), and in much lower amount (1%) in preparations from whole plants. The results are compared with data obtained previously by pulsed-field gel electrophoresis and discussed in relation to the structural organization and replication of the mt genome of higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André CP, Walbot V (1995) Pulsed-field gel mapping of maize mitochondrial chromosomes. Mol Gen Genet 247:255–263

    PubMed  Google Scholar 

  • André CP, Levy AA, Walbot V (1992) Small repeated sequences and the structure of plant mitochondria genomes. Trends Genet 8:128–132

    PubMed  Google Scholar 

  • Backert S, Dörfel P, Börner T (1995) Investigation of plant organellar DNA by pulsed-field gel electrophoresis. Curr Genet 28:390–399

    PubMed  Google Scholar 

  • Bailey-Serres J, Leroy P, Jones SS, Wahleithner JA, Wolstenholme DR (1987) Size distributions of circular molecules in plant mitochondrial DNAs. Curr Genet. 12:49–53

    PubMed  Google Scholar 

  • Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24:279–290

    PubMed  Google Scholar 

  • Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17:421–425

    Google Scholar 

  • Bendich AJ, Loretz CJ, Monnat RJ Jr (1993) The structure of the plant mitochondrial genome. In: Brennicke A, Kück U (eds) Plant mitochondria. Verlag Chemie, Weinheim, pp 171–180

    Google Scholar 

  • Beverley SM (1988) Characterization of the ‘unusual’ mobility of large circular DNAs in pulsed field-gradient electrophoresis. Nucleic Acids Res 16:926–939

    Google Scholar 

  • Bohnert HJ (1977) Size and structure of mitochondrial DNA fromPhysarum polycephalum. Exp Cell Res 106:426–430

    PubMed  Google Scholar 

  • Brennicke A, Blanz P (1982) Circular mitochondrial DNA species fromOenothera with unique sequences. Mol Gen Genet 187:461–466

    Google Scholar 

  • Burkhardt H, Lurz R (1982) Electron microscopy. In: Pühler A, Timmis KN (eds) Advanced molecular genetics. Springer-Verlag, Berlin, pp 281–308

    Google Scholar 

  • Dale RMK, Duesing JH, Keene D (1981) Supercoiled mitochondrial DNAs from plant tissue-culture cells. Nucleic Acids Res 9:4583–4593

    PubMed  Google Scholar 

  • Dinouel N, Drissi R, Miyakawa I, Sor F, Rousset S, Fukuhara H (1993) Linear mitochondrial DNAs of yeasts: closed-loop structure of the termini and possible linear-circular conversion mechanisms. Mol Cell Biol 13:2315–2323

    PubMed  Google Scholar 

  • Dörfel P, Weihe A, Knösche R, Börner T (1989) Mitochondrial DNA ofChenopodium album (L.): comparison of leaves and suspension cultures. Curr Genet 16:375–380

    Google Scholar 

  • Dörfel P, Weihe R, Dolferus R, Börner T (1991) DNA sequence of a mitochondrial plasmid fromChenopodium album. Plant Mol Biol 17:155–156

    PubMed  Google Scholar 

  • Dudareva NA, Kiseleva EV, Boyarintseva AG, Maystrenko AG, Khrystolyubova NB, Sagalnik RI (1988) Structure of the mitochondrial genome ofBeta vulgaris L. Theor Appl Genet 76:753–759

    Google Scholar 

  • Fauron CMR, Havlik M. Bretell RIS (1990) The mitochondrial genome organization of a maize fertile cmsT revertant is generated through recombination between two sets of repeats. Genetics 124:423–428

    PubMed  Google Scholar 

  • Fontarnau A, Hernández-Yago J (1982) Characterization of mitochondrial DNA inCitrus. Plant Physiol 70:1678–1682

    Google Scholar 

  • Gilbert W, Dressler D (1968) DNA replication the rolling-circle model. Cold Spring Harbor Symp Quant Biol 33:473–484

    PubMed  Google Scholar 

  • Goddard JM, Cummings DJ (1975) Structure and replication of mitochondrial DNA fromParamecium aurelia. J Mol Biol 97:593–609

    PubMed  Google Scholar 

  • Gray MW (1989) Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol 5:25–50

    PubMed  Google Scholar 

  • Gruss A, Ehrlich SD (1989) The family of highly interrelated singlestranded DNA plasmids. Microbiol Rev 53:231–241

    PubMed  Google Scholar 

  • Han ZY, Stachow C (1994) Analysis ofSchizosaccharomyces pombe mitochondrial DNA replication by two-dimensional gel electrophoresis. Chromosoma 103:162–170

    PubMed  Google Scholar 

  • Handa H, Tsunewaki K, Kumisada T, Yamagashi H (1984) Small circular DNA molecules in wheat mitochondria. Mol Gen Genet 194:368–372

    Google Scholar 

  • Kenwrick S, Pattersohn M, Speer A, Fischbeck K, Davies K (1987) Molecular analysis of the Duchenne muscular dystrophy region using pulsed-field gel electrophoresis. Cell 48:351–357

    PubMed  Google Scholar 

  • Kim BD, Lee KJ, de Busk AG (1982) Linear and ‘lasso-like’ structures of mitochondrial DNA fromPennisetum typhoides. FEBS Lett 147:231–234

    Google Scholar 

  • Knösche R, Günther G (1988) A cell-division cycle in suspension cultures fromChenopodium album with unspecific arrest at G1 and G2 phase under stationary growth conditions. Biol Zentralbl 107:653–661

    Google Scholar 

  • Kolodner P, Tewari KK (1972) Physicochemical characterization of mitochondrial DNA from pea leaves. Proc Natl Acad Sci USA 69:1830–1834

    PubMed  Google Scholar 

  • Kool AJ, de Haas JM, Mol JNM, van Marrewijk GAM (1985) Isolation and physicochemical characterization of mitochondrial DNA from cultured cells ofPetunia hybrida. Theor Appl Genet 69:223–233

    Google Scholar 

  • Koths K, Dressler D (1978) Analysis of ϕXDNA replication cycle by electron microscopy. Proc Natl Acad Sci USA 75:605–609

    PubMed  Google Scholar 

  • Lang D, Mitani M (1970) Simplified quantitative electron microscopy of biopolymers. Biopolymers 9:373–379

    PubMed  Google Scholar 

  • León P, Macaya G (1983) Properties of DNA-rosettes and their relevance to chromosome structure. Chromosoma 88:307–314

    PubMed  Google Scholar 

  • Levenne SD, Zimm BH (1987) Separation of open-circular DNA using pulsed-field electrophoresis. Proc Natl Acad Sci USA 84:4054–4057

    PubMed  Google Scholar 

  • Levings CS III, Shah DM, Hu WWL, Pring DR, Timothy DH (1979) Molecular heterogeneity among mitochondrial DNAs from different maize cytoplasms. In: Cummings DJ, Borst P, David IB, Weissman SM, Fox C (eds) Extrachromosomal DNA. ICN-UCLA Symp Mol Cell Biol 15. Academic Press, New York, pp 63–73

    Google Scholar 

  • Levy AA, André CP, Walbot V (1991) Analysis of a 120-kilobase mitochodrial chromosome in maize. Genetics 128:417–424

    PubMed  Google Scholar 

  • Lonsdale DM, Hodge TP, Fauron CM-R (1984) The physical map and organization of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res 12:9249–9261

    PubMed  Google Scholar 

  • Lonsdale DM, Brears T, Hodge TP, Melville SA, Rottman WH (1988) The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity. Phil Trans R Soc Lond B 319:140–163

    Google Scholar 

  • Maleszka R, Skelly PJ, Clark-Walker GD (1991) Rolling-circle replication of DNA in yeast mitochondria. EMBO J 10:3923–3929

    PubMed  Google Scholar 

  • Manna F, Del Giudice L, Massardo DR, Schreil WH, Cermola M, Devreux M, Wolf K (1985) The mitochondrial genome ofNicotiana plumbaginifolia. Curr Genet 9:411–415

    Google Scholar 

  • Negruk VI, Eisner GI, Redichkina TD, Dumanskaya NN, Cherny DI, Alexandrov AA, Shemyakin MF, Butenko RG (1986) Diversity ofVicia faba circular mtDNA in whole plants and suspension cultures. Theor Appl Genet 72:541–547

    Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwortMarchantia polymorpha mitochondrial DNA. J Mol Biol 223:1–7

    PubMed  Google Scholar 

  • Narayanan KK, André CP, Yang J, Walbot V (1993) Organization of a 117-kb circular mitochondrial chromosome in IR36 rice. Curr Genet 23:248–254

    PubMed  Google Scholar 

  • Palmer JD (1992) Chloroplast and mitochondrial genome evolution in land plants. In: Herrmann RG (ed) Cell organelles. Springer-Verlag, Wien, pp 99–133

    Google Scholar 

  • Palmer JD, Shields CR (1984) Tripartite structure of theBrassica compestris mitochondrial genome. Nature 307:437–440

    Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 301:292–296

    Google Scholar 

  • Schuster W, Brennicke A (1994) The plant mitochondrial genome: physical structure, information content, RNA editing, and gene migration to the nucleus. Annu Rev Plant Physiol Plant Mol Biol 45:61–78

    Google Scholar 

  • Schuster W, Hiesel B, Wiesinger B, Schobel W, Brennicke A (1988) Isolation and analysis of plant mitochondria and their genomes. In: Shaw CH (ed) Plant molecular biology — a practical approach, IRL Press, Oxford, pp 79–102

    Google Scholar 

  • Shapiro TA (1993) Kinetoplast DNA maxicircles: networks within networks. Proc Natl Acad Sci USA 90:7809–7813

    PubMed  Google Scholar 

  • Siemenroth A, Wollgiehn R, Neumann D, Börner T (1981) Synthesis of ribosomal RNA in ribosome-deficient plastids of the mutant ‘albostrians’ ofHordeum vulgare L Planta 153:547–555

    Google Scholar 

  • Small ID, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    PubMed  Google Scholar 

  • Solar G-del, Moscoso M, Espinosa M (1993) Rolling circle-replicating plasmids from gram-positive and gram-negative bacteria: a wall falls. Mol Microbiol 8:789–796

    PubMed  Google Scholar 

  • Sparks RB Jr, Dale RMK (1980) Characterization of3H-labeled supercoiled mitochondrial DNA from tobacco suspension culture cells. Mol Gen Genet 180:351–355

    Google Scholar 

  • Synenki RM, Levings CS III, Shah DM (1978) Physicochemical characterization of mitochondrial DNA from soybean. Plant Physiol 61:460–464

    Google Scholar 

  • Unseld M, Brandt P, Heinze B, Eckert-Ossenkopp U, Brennicke A (1993) The mitochondrial genome ofArabidopsis thaliana. In: Brennicke A, Kück U (eds) Plant mitochondrial. Verlag Chemie, Weinheim, pp 137–143

    Google Scholar 

  • Wahleithner JA, Wolstenholme DR (1988) Origin and direction of replication in mitochondrial plasmid DNAs of broad bean,Vicia faba. Curr Genet 14:163–170

    PubMed  Google Scholar 

  • Wang B, Cheng W, Li Y-N, Li D-D (1989) Some physicochemical properties of rice mitochondrial DNA. Theor Appl Genet 77:581–586

    Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Curr Genet 12:55–67

    Google Scholar 

  • Wilson AJ, Choury PS (1984) An rapid inexpensive method for the isolation of restrictable mitochondrial DNA from various plant sources. Plant Cell Rep 3:237–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Kössel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backert, S., Lurz, R. & Börner, T. Electron microscopic investigation of mitochondrial DNA fromChenopodium album (L.). Curr Genet 29, 427–436 (1996). https://doi.org/10.1007/BF02221510

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02221510

Key words

Navigation