Skip to main content

Advertisement

Log in

Quantitative determination of regional extravascular lung water and regional blood volume in congestive heart failure

  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Regional extravascular lung water (rELW) and blood volume (rBV) in five controls and 14 patients with congestive heart failure (CHF) were measured by constant infusion of H2 15O and inhalation of 11CO using positron emission tomography (PET). The analysis of 18 regions per patient revealed a relatively homogenous level of rELW in the controls (x=0.11±0.02 g/cc; range, 0.08–0.21), whereas this increased in patients with CHF (0.17±0.02 g/cc; range, 0.10–0.51). The rBV was 0.21±0.02 g/cc in the controls and 0.17±0.02 g/cc in patients with CHF. A good correlation was found between the severity of chronic heart failure (according to the grading of the New York Heart Association) and mean extravascular lung water (ELW) (r=0.69), as well as between CHF and the ratio rELW/rBV (r=0.87); however, the correlation to hemodynamic data was less satisfactory (cardiac index, r=0.45; pulmonary capillary wedge pressure, r=0.47; ejection fraction, r=0.60). In supine controls, a progressive decrease in regional blood volume from the basal to the apical regions was observed, whereas the differences in ELW were only small. In patients with chronic heart failure, ELW in the basal parts was markedly increased, whereas in the apical regions, only minor deviations from the controls were observed. In the basal regions of these patients, the blood volume was reduced by about 30%. Instead of the normal basoapical gradient of blood volume, these patients showed a rather flat distribution. Radiographic findings of pulmonary edema generally appeared together with an ELW level of greater than 0.14 g/cc. We conclude that the amount and distribution of fluid in pulmonary congestion can be noninvasively assessed by PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahluwalia BD, Brownell GL, Hales CA, Kazemi H (1981) An index of pulmonary edema measured with emission computed tomography. J Comput Assist Tomogr 5:690–694

    Google Scholar 

  2. Armstrong JD, Gluck EH, Crapp RO, Jones HA, Hughes JMB (1982) Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax 37:676–679

    Google Scholar 

  3. Barcroft J (1920) Severe problems of the circulation during gas poisoning. J R Army Med Corps 34:155–173

    Google Scholar 

  4. Bossaller C, Schober O, Meyer G-J, Hundeshagen H, Lichtlen PR (1984) Die Bestimmung des regionalen extravaskulären Lungenwassers bei Herzinsuffizienz. Z Kardiol 73:81–88

    Google Scholar 

  5. Carrol LR (1978) Design and performance characteristics of a production model positron imaging system. IEEE Trans Nucl Sci 25:606–614

    Google Scholar 

  6. Chinard FP (1975) Estimation of extravascular lung water by indicator dilution techniques. Circ Res 37:137–145

    Google Scholar 

  7. Chinard FP, Enns T (1954) Transcapillary pulmonary exchange of water in the dog. Am J Physiol 178:197–202

    Google Scholar 

  8. Chinard FP, Enns T, Nolan MF (1962) Pulmonary extravascular water volumes from transit time and slope data. J Appl Physiol 17:137–145

    Google Scholar 

  9. Doehring W, Linke G, Stender H-St (1981) CT densitometry of the lung. In: Donner MW, Heuck FHW (eds) Radiology today. Springer, Berlin Heidelberg New York, pp 99–112

    Google Scholar 

  10. Doyle AE, Goodwin JF, Harrison CV, Steiner RE (1957) Pulmonary vascular patterns in pulmonary hypertension. Br Heart J 19:353–365

    Google Scholar 

  11. Fazio F, Giuntini C (1979) Determination of extravascular lung water by indicator dilution method. II. Techniques and results in dog and man. J Nucl Med Allied Sci 23:97–107

    Google Scholar 

  12. Gamsu GL, Kaufman L, Swann S, Brito AC (1979) Absolute lung density in experimental canine pulmonary edema. Invest Radiol 14:261–269

    Google Scholar 

  13. Goresky CA, Cronin RFP, Wangel BE (1969) Indicator dilution measurements of extravascular water in the lungs. J Clin Invest 48:487–501

    Google Scholar 

  14. Guzzardi R, Mey M (1979) Further appraisal and improvements of 90 degrees compton scattering tomography of the lung. Phys Med Biol 26:261–269

    Google Scholar 

  15. Hales CA, Kanarek DJ, Ahluwalia B, Latty A, Erdmann J, Javaheri S, Kazemi H (1981) Regional edema formation in isolated perfused dog lungs. Circ Res 48:121–127

    Google Scholar 

  16. Heath D, Edwards JE (1959) Histological changes in the lungs in diseases associated with pulmonary venous hypertension. Br J Dis Chest 53:8–18

    Google Scholar 

  17. Helmeke HJ, Schober O, Lehr L, Junker D, Meyer G-J, Fitschen J, Bossaller C, Hundeshagen H (1982) Measurement of regional lung water with 15O-labeled water and C 15O-labeled carboxyhemoglobin. In: Hoefer R, Bergmann H (eds) Radioaktive Isotope in Klinik und Forschung, vol 15. Egermann, Wien, pp 635–642

    Google Scholar 

  18. Herscovitch P, Markam J, Raichle ME (1983) Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 24:782–789

    Google Scholar 

  19. Hoffman EJ, Huang S-C, Phelps ME (1979) Quantitation in positron emission computed tomography. 1. Effect of object size. J Comput Assist Tomogr 3:299–308

    Google Scholar 

  20. Huang S-C, Phelps ME, Hoffman EJ, Kuhl DE (1979) A theoretical study of quantitative flow measurements with constant infusion of shortlived isotopes. Phys Med Biol 24:1151–1161

    Google Scholar 

  21. Huang S-C, Carson RE, Hoffman EJ, Hoffman EJ, Schelbert HR, Kuhl DE (1983) Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and O-15 Water. J Cereb Blood Flow Metab 3:141–153

    Google Scholar 

  22. Hughes JMB (1982) In: Prakash O (ed) Applied physiology in clinical respiratory care. Martinus Nijhoff, The Hague, Boston London, pp 45–54

    Google Scholar 

  23. Junker D (1980) Dosimetrie inkorporierter Strahler. In: Hundeshagen H (ed) Encyclopedia of medical radiology, vol 15, pt 1A. Springer, Berlin Heidelberg New York, pp 425–482

    Google Scholar 

  24. Kairento A-L, Brownell GL, Schluederberg J, Elmaleh DR (1983) Regional blood-flow measurement in rabbit soft tissue tumor with positron imaging using the C15-15O2 steady-state and labeled microspheres. J Nucl Med 24:1135–1142

    Google Scholar 

  25. Kearfott J (1982) Absorbed dose estimates for positron emission tomography (PET): CO-15, C-11-O, CO-15-O. J Nucl Med 23:1031–1037

    Google Scholar 

  26. Lammertsma AA, Jones T, Frackowiak RSJ, Lenzi GL (1981) A theoretical study of the steady state model for measuring regional cerebral blood flow and oxygen utulization using oxygen-15. J Comput Assist Tomogr 5:544–550

    Google Scholar 

  27. Lewis FR, Elings VB, Hill SL, Christensen JM (1982) The measurement of extravascular lung water by thermal-green dye indicator dilution. Ann NY Acad Sci 80:394–410

    Google Scholar 

  28. Lichtlen PR (ed) (1979) Koronarangiographie. Straube, Erlangen

    Google Scholar 

  29. McCredie RM (1967) Measurement of pulmonary edema in valvular heart disease. Circulation 36:381–386

    Google Scholar 

  30. McCredie RM (1974) Measurement of lung water. In: Yu PN, Odwin JF (eds) Progress in cardiology. Lea and Febiger, Philadelphia, pp 331–339

    Google Scholar 

  31. McCredie RM, Allen RM (1979) Measurement of lung water in cardiovascular disease by indicator dilution. In: Cardiology: proceedings of the 8th World Congress of the Cardiology Internal Congress Series. Excerpta medica 470:677–681

  32. Meszaros WT (1968) Lung changes in left heart failure. Circulation 47:859–871

    Google Scholar 

  33. Meyer E, Yamamoto YL (1984) The requirement for constant arterial radioactivity in the CO-15O2 steady-state blood-flow model. J Nucl Med 25:455–460

    Google Scholar 

  34. Meyer G-J, Schober O, Bossaller C, Hundeshagen H (1984) Quantification of regional extravascular lung water in dogs with positron emission tomography, using constant infusion of O-15-labeled water. Eur J Nucl Med 9:220–228

    Google Scholar 

  35. Mintun MA, Raichle ME, Martin WRW (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187

    Google Scholar 

  36. Pistolesi M, Giuntini C (1978) Assessment of extravascular lung water. Radiol Clin North Am 16:551–574

    Google Scholar 

  37. Pistolesi M, Miniati M, Ravelli V (1982) Injury versus hydrostatic lung edema: Detection by chest X-ray. Ann NY Acad Sci 80:364–380

    Google Scholar 

  38. Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2-15O. II. Implementation and validation. J Nucl Med 24:790–798

    Google Scholar 

  39. Rhodes CG, Wollmer P, Fazio F, Jones T (1981) Quantitative measurement of regional extravascular lung density using positron emission and transmission tomography. J Comput Assist Tomogr 5:783–791

    Google Scholar 

  40. Rosenblum PJ, Mauceri DO, Wellenstein DE, Bassano DA, Cohen WN, Heitzman ER (1978) Computed tomography of the lung. Radiology 129:521–524

    Google Scholar 

  41. Schober O, Meyer G-J, Bossaller C, Lobenhoffer P, Knoop B, Müller S, Creutzig H, Sturm J, Lichtlen P, Hundeshagen H (1983) Quantitative measurements of regional extravascular lung water in dogs using positron emission tomography. Fortschr Roentgenstr 139:117–126

    Google Scholar 

  42. Snashall PD (1980) Pulmonary oedema. Br J Dis Chest 74:2–22

    Google Scholar 

  43. Snashall PD, Keyes SJ, Morgan BM, McAnulty RJ, Mitchel-Heggs PF, McIvor JM, Howlett KA (1981) The radiographic detection of acute pulmonary oedema. A comparison of radiographic appearances, densitometry and lung water in dogs. Br J Radiol 54:277–288

    Google Scholar 

  44. Staub NC (1974) Pulmonary edema. Physiol Rev 54:679–811

    Google Scholar 

  45. Staub NC (ed) (1978) Lung water and solute exchange. Marcel Dekker, New York Basel

    Google Scholar 

  46. Stender H-St (1961) Das interstitielle Lungenoedem im Roentgenbild. Fortschr Roentgenstr 95:461–471

    Google Scholar 

  47. Stender H-St (1978) Röntgendiagostik der Lungengerüsterkrankungen. In: Erkrankungen des Lungenparenchyms. Georg Thieme, Stuttgart, pp 108–119

    Google Scholar 

  48. Stender H-St, Schermuly W (1969) Allgemeine Röntgensymptomatologie der Lungenerkrankungen. In: Diethelm L (ed) Encyclopedia of medical radiology, vol 9. Springer, Berlin Heidelberg New York, pp 226–329

    Google Scholar 

  49. Sturm J, Oestern H-J, Magshudi M, Pfiffer O, Joachim H (1982) Die gravimetrische Überprüfung der klinischen Lungenwasseruntersuchungen (Thermo-Dye-Green). In: Weller S (ed) Chir Forum f experim klin Forsch. Springer, Berlin Heidelberg New York, pp 49–53

    Google Scholar 

  50. Swinburne AJ, MacArthur CGC, Rhodes CG, Heather JD, Hughes JMB (1982) Measurement of lung water in dog lobes using inhaled C 15O2 and injected H2 15O. Appl Physiol Environ Exerc Physiol 52:1535–1544

    Google Scholar 

  51. Wegener OH, Koeppe P, Oeser H (1978) Measurement of lung density by computed tomography. J Comput Assist Tomogr 2:263–273

    Google Scholar 

  52. West JB (ed) (1977) Regional differences in the lung. Academic Press, New York San Francisco London

    Google Scholar 

  53. Wollmer P, Rhodes CG, Allan RM, Maseri A, Fazio F (1983) REgional extravascular lung density and fractional pulmonary blood volume in patients with chronic pulmonary venous hypertension. Clin Physiol 3:241–256

    Google Scholar 

  54. Yu PN (1971) Lung water in congestive heart failure. Mod Concepts Cardiovasc Dis 40:27–32

    Google Scholar 

  55. Zierler K (1961) Theory of the use of arteriovenous concentration differences for measuring metabolism in steady and nonsteady states. J Clin Invest 40:2111–2125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Hans-Stephan Stender on his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schober, O.H., Meyer, GJ., Bossaller, C. et al. Quantitative determination of regional extravascular lung water and regional blood volume in congestive heart failure. Eur J Nucl Med 10, 17–24 (1985). https://doi.org/10.1007/BF00261757

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261757

Keywords

Navigation