Skip to main content
Log in

Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum

II. Evidence for different origins of acetate carbon atoms

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Autotrophic CO2 fixation byMethanobacterium thermoautotrophicum proceeds via a total synthesis of activated acetic acid. The origins of the individual carbon atoms were studied in vitro and in vivo. The experiments described showed:

  1. (1)

    Two different routes of CO2 reduction lead to the individual carbon positions in acetate.

  2. (2)

    The carboxyl carbon is provided by a cyanide-sensitive enzyme which reduces CO2 to a bound intermediate with the oxidation state of CO. This intermediate can be supplied by gaseous CO rather than by formate, when its synthesis from CO2 is blocked by cyanide. The characteristics of the enzymic reaction are those of carbon monoxide dehydrogenase.

  3. (3)

    The methyl carbon is derived from CO2 via a different cyanide-insensitive CO2 reduction path, which probably shares the initial intermediates of methanogenesis from CO2 and H2. It does not involve methyl coenzyme M. It is concluded that the pathway of autotrophic CO2 assimilation into activated acetic acid inMethanobacterium is mechanistically related to the clostridial total acetate synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen TH, Root WS (1955) Colorimetric determination of carbon monoxide in air by an improved palladium chloride method. J Biol Chem 216:309–317

    Google Scholar 

  • Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains Δ H and Marburg ofMethanobacterium thermoautotrophicum. Zbl Bakt Hyg, I. Abt Orig C 2:311–317

    Google Scholar 

  • Conrad R, Thauer RK (1983) Carbon monoxide production byMethanobacterium thermoautotrophicum. FEMS Microbiol Lett 20:229–232

    Google Scholar 

  • Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of14CO2 and14CH3OH incorporated into whole cells. J Bacteriol 136:75–84

    Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    Google Scholar 

  • Diekert G, Ritter M (1983) Carbon monoxide fixation into the carboxyl group of acetate during growth ofAcetobacterium woodii on H2 and CO2. FEMS Microbiol Lett 17:299–302

    Google Scholar 

  • Drake HL, Hu SI, Wood HG (1981) Purification of five components fromClostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J Biol Chem 21:11137–11144

    Google Scholar 

  • Eden G, Fuchs G (1982) Total synthesis of acetyl CoA involved in autotrophic CO2 fixation inAcetobacterium woodii. Arch Microbiol 133:66–74

    Google Scholar 

  • Eikmanns B, Thauer RK (1984) Catalysis of an isotope exchange between CO2 and the carboxyl group of acetate byMethanosarcina barkeri grown on acetate. Arch Microbiol (submitted)

  • Ellefson WL, Wolfe RS (1980) Role of component C in the methylreductase system ofMethanobacterium. J Biol Chem 255:8388–8389

    Google Scholar 

  • Ferry JG, Sherod DW, Peck HD, Ljungdahl LG (1976) Levels of formyltetrahyrofolate synthetase and methylenetetrahydrofolate dehydrogenase in methanogenic bacteria. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases (H2, CH4, CO). Goltze, Göttingen, pp 151–155

    Google Scholar 

  • Friedrich W (1975) Vitamin B12 und verwandte Corrinoide. In: Ammon R, Dirscherl W (eds) Fermente, Hormone, Vitamine, vol III/2, 3rd edn. Thieme Stuttgart, pp 1–97

    Google Scholar 

  • Fuchs G, Stupperich E (1982) Autotrophic CO2 fixation pathway inMethanobacterium thermoautotrophicum. In: Kandler O (ed) Archaebacteria. Fischer Stuttgart New York, pp 277–288

    Google Scholar 

  • Fuchs G, Stupperich E (1983) CO2 fixation pathways in bacteria. Physiol Veg 21:845–854

    Google Scholar 

  • Fuchs G, Stupperich E (1984) CO2 reduction to cell carbon in methanogens. In: Microbial growth on C1-compounds. (in press)

  • Fuchs G, Schnitker U, Thauer RK (1974) Carbon monoxide oxidation by growing cultures ofClostridium pasteurianum. Eur J Biochem 49:111–115

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980) Autotrophic CO2 fixation inChlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128: 64–71

    Google Scholar 

  • Grassl M (1974) Alanin-Bestimmung mit GPT und LDH. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 2. Verlag Chemie, Weinheim, pp 1727–1730

    Google Scholar 

  • Gunsalus RP, Wolfe RS (1977) Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts ofMethanobacterium. Biochem Biophys Comm 76:790–795

    Google Scholar 

  • Gunsalus RP, Wolfe RS (1980) Methyl coenzyme M reductase fromMethanobacterium thermoautotrophicum. J Biol Chem 255:1891–1895

    Google Scholar 

  • Gunsalus RP, Romesser JA, Wolfe RS (1978) Preparation of coenzyme M analogues and their activity in the methyl coenzyme A reductase system ofMethanobacterium thermoautotrophicum. Biochemistry 17:2374–2377

    Google Scholar 

  • Hohorst HJ (1970)l-(+)-Lactat-Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 2. Verlag Chemie, Weinheim, pp 1425–1429

    Google Scholar 

  • Hu SI, Drake HL, Wood HG (1982) Synthesis of acetyl coenzyme M from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes fromClostridium thermoaceticum. J Bacteriol 149:440–448

    Google Scholar 

  • Jansen K, Thauer RK, Widdel F, Fuchs G (1984) Carbon assimilation pathways in sulfate reducing bacteria. Formate, CO2, carbon monoxide, and acetate assimilation byDesulfovibrio baarsii. Arch Microbiol (submitted)

  • Keltjens JT, Vogels GD (1981) Novel coenzymes of methanogens. In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London Philadelphia Rheine, pp 152–158

    Google Scholar 

  • Keltjens JT, Caerteling G, van Kooten A, van Dijk H, Vogels GD (1983a) 6,7-Dimethyl-8-ribityl-5,6,7,8-tetrahydrolumazine, a proposed constituent of coenzyme MF430 from methanogenic bacteria. Biochim Biophys Acta 743:351–358

    Google Scholar 

  • Keltjens JT, Daniels L, Jannsen HG, Borm PJ, Vogels GD (1983b) A novel one-carbon carrier (carboxy-5,6,7,8-tetrahydromethanopterin) isolated fromMethanobacterium thermoautotrophicum and derived from methanopterin. Eur J Biochem 130:545–552

    Google Scholar 

  • Kenealy W, Zeikus WG (1981) Influence of corrinoid antagonists on methanogen metabolism. J Bacteriol 146:133–140

    Google Scholar 

  • Kenealy WR, Zeikus JG (1982) One-carbon metabolism in methanogens: Evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism inMethanosarcina barkeri J Bacteriol 151:932–941

    Google Scholar 

  • Leigh JA (1983) Levels of water-soluble vitamins in methanogenic and nonmethanogenic bacteria. Appl Environ Microbiol 45:800–803

    Google Scholar 

  • Leigh JA, Wolfe RS (1983) Carbon dioxide reduction factor and methanopterin, two coenzymes required for CO2 reduction to methane by extracts ofMethanobacterium. J Biol Chem 258:7536–7540

    Google Scholar 

  • Ljungdahl L, Wood HG (1982) Acetate synthesis. In: Dolphin D (ed) Vitamin B12. Academic Press, New York, pp 165–202

    Google Scholar 

  • Müller O, Müller G (1962) Synthesen auf dem Vitamin B12-Gebiet. XIV. Über die Synthese von Corrinoiden mit Kobalt-Kohlenstoff-Bindung. Biochem 336:299–313

    Google Scholar 

  • Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate inMethanobacterium thermoautotrophicum. Arch Microbiol 128:248–252

    Google Scholar 

  • Poston JM, Kuratomi K, Stadtman ER (1966) The conversion of carbon dioxide to acetate. I. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts ofClostridium thermoaceticum. J Biol Chem 241:4209–4219

    Google Scholar 

  • Romesser JA, Wolfe RS (1982) Coupling of methyl Coenzyme M reduction with carbon dioxide activation in extracts ofMethanobacterium thermoautotrophicum. J Bacteriol 152:840–847

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s,μ max,Y s) ofMethanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Simon H, Floss HG (1967) Bestimmung der Isotopenverteilung in markierten Verbindungen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Simon H, Palm D (1966) Isotope effects in organic chemistry and biochemistry. Angew Chem 5:920–933

    Google Scholar 

  • Stupperich E, Fuchs G (1983) Autotrophic acetyl coenzyme A synthesis in vitro from two CO2 inMethanobacterium. FEBS Lett 156:345–348

    Google Scholar 

  • Stupperich E, Fuchs G (1984) Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum. Properties of in vitro system. Arch Microbiol 139:8–13

    Google Scholar 

  • Stupperich E, Hammel KE, Fuchs G, Thauer RK (1983) Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth ofMethanobacterium. FEBS Lett 152:21–23

    Google Scholar 

  • Taylor CD, Wolfe RS (1974) Structure and methylation of coenzyme M (HSCH2CH2SO3). J Biol Chem 249:4879–4885

    Google Scholar 

  • Thauer RK, Fuchs G, Käufer B, Schnitker U (1974) Carbon monoxide oxidation in cell-free extracts ofClostridium pasteurianum. Eur J Biochem 45:343–349

    Google Scholar 

  • Thauer RK, Diekert G, Schönheit P (1980) Biological role of nickel. Trends Biochem Sci Vol 5 No 11, 304–349

    Google Scholar 

  • Vogels GD, Visser CM (1983) Interconnection of methanogenic and acetogenic pathways. FEMS Microbiol Letters 20:291–297

    Google Scholar 

  • Vogels GD, Keltjens JT, Hutten TJ, van der Drift C (1982) Coenzymes of methanogenic bacteria. In: Kandler O (ed)Archaebacteria. Fischer, Stuttgart New York, pp 258–264

    Google Scholar 

  • Wolfe RS (1979) Methanogens: a surprising microbial group. Antonie van Leeuwenhoek 45:353–364

    Google Scholar 

  • Wolfe RS, Higgins IJ (1979) Microbial biochemistry of methane —a study in contrasts. Rev Biochem 21:267–300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stupperich, E., Fuchs, G. Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum . Arch. Microbiol. 139, 14–20 (1984). https://doi.org/10.1007/BF00692705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692705

Key words

Navigation