Skip to main content
Log in

Metal-Catalyzed Oxidation of Brain-Derived Neurotrophic Factor (BDNF): Analytical Challenges for the Identification of Modified Sites

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We examined the metal-catalyzed oxidation of brain-derivedneurotrophic factor (BDNF) using the Cu(II)/ascorbate/O2 modeloxidative system.

Methods. Electrospray ionization mass spectrometry, peptide mappingand amino acid analysis were utilized to determine the nature of thecovalent modification induced by the metal-catalyzed oxidative system.Additionally, analytical ultracentrifugation, the Bradford assay, circulardichroism and ANSA dye-binding were used to determine the natureof any conformational changes induced by the oxidation.

Results. Exposure of BDNF to the Cu(II)/ascorbate/O2 system led tothe modification of ca. 35% of Met92 to its sulfoxide, and to subsequentconformational changes. The proteolytic digestion procedure wassensitive to this conformational change, and was unable to detect themodification. Chemical digestion with CNBr, however, was not sensitive tothis change, and allowed for the identification of the site ofmodification.

Conclusions. The modification of Met92 to its sulfoxide rendered theoxidized BDNF inaccessible to proteolytic digestion, due toconformational changes associated with the oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Cleland, M. F. Powell, and S. J. Shire. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10:307-377 (1993).

    Google Scholar 

  2. S. Li, T. H. Nguyen, Ch. Schöneich, and R. T. Borchardt. Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation. Biochemistry 34:5762-5772 (1995).

    Google Scholar 

  3. F. Zhao, E. Ghezzo-Schöneich, G. I. Aced, J. Hong, T. Milby, and Ch. Schöneich. Metal-catalyzed oxidation of histidine in human growth hormone. J. Biol. Chem. 272:9019-9029 (1997).

    Google Scholar 

  4. Ch. Schöneich, M. J. Hageman, and R. T. Borchardt. Stability of peptides and proteins. In K. Park (ed), Controlled Drug Delivery: Challenges and Strategies, American Chemical Society, 1997, pp. 205-228.

  5. R. R. Beitle and M. M. Atai. Immobilized metal affinity chromatography and related techniques. AlChE Symposium Series 88:34-44 (1992).

    Google Scholar 

  6. E. Hochuli. Large-scale chromatography of recombinant proteins. J. Chromatogr. 444:293-302 (1988).

    Google Scholar 

  7. U. Zawitowska, J. Zawitowski, and A. D. Friesen. Applications of immobilized metal affinity chromatography for large-scale purification of endogenous α-amylase inhibitor from barley kernels. Biotechnol. Appl. Biochem. 15:160-170 (1992).

    Google Scholar 

  8. E. R. Stadtman. Metalion catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic. Biol. Med. 9:315-325 (1990).

    Google Scholar 

  9. A. J. Rivett and R. L. Levine. Metal-catalyzed oxidation of escherichia coli glutamine synthetase: correlation of structural and functional changes. Arch. Biochem. Biophys. 278:26-34 (1990).

    Google Scholar 

  10. N. Lundell and T. Schreitmüller. Sample preparation for peptide mapping-a pharmaceutical quality-control perspective. Anal. Biochem. 266:31-47 (1999).

    Google Scholar 

  11. C. Radziejewski, R. C. Robinson, P. S. DiStefano, and J. W. Taylor. Dimeric structure and conformational stability of brain-derived neurotrophic factor and neurotrophin-3. Biochemistry 31:4431-4436 (1992).

    Google Scholar 

  12. J. Ozols. Amino acid analysis. Methods Enzymol. 182:587-601 (1990).

    Google Scholar 

  13. W. J. Ray and D. E. J. Koshland. Identification of amino acids involved in phosphoglucomutase action. J. Biol. Chem. 237:2493-2505 (1962).

    Google Scholar 

  14. H. T. Keutmann and J. T. J. Potts. Improved recovery of methionine after acid hydrolysis using mercaptoethanol. Anal. Biochem. 29:175-185 (1969).

    Google Scholar 

  15. N. F. Floyd, M. S. Cammaroti, and T. F. Lavine. The decomposition of dl-methionine sulfoxide in 6 N hydrochloric acid. Arch. Biochem. Biophys. 102:343 (1963).

    Google Scholar 

  16. R. J. Simpson, M. R. Neuberger, and T. Y. Liu. Complete amino acid analysis of proteins from a single hydrolysate. J. Biol. Chem. 251:1936-1940 (1976).

    Google Scholar 

  17. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 (1976).

    Google Scholar 

  18. K. Morand, G. Talbo, and M. Mann. Oxidation of peptides during electrospray ionization. Rapid Commun. Mass Spectrom. 7:738-743 (1993).

    Google Scholar 

  19. N. Neumann and G. Snatzke. Circular dichroism of proteins. In R. A. Bradshaw and M. Purton (eds), Proteins: Form and Function, Elsevier, New York, 1990, pp. 107-116.

    Google Scholar 

  20. L. O. Narhi, R. Rosenfeld, J. Talvenheimo, S. J. Pestrelski, T. Arakawa, J. W. Lary, C. G. Kolvenbach, R. Hecht, T. Boone, J. A. Miller, and D. A. Yphantis. Comparison of the biophysical characteristics of human brain-derived neurotrophic factor, neurotrophin-3, and nerve growth factor. J. Biol. Chem. 268:13309-13317 (1993).

    Google Scholar 

  21. J. S. Philo, R. Rosenfeld, T. Arakawa, J. Wen, and L. O. Narhi. Refolding of brain-derived neurotrophic factor from guanidine hydrochloride: kinetic trapping in a collapsed form which is incompetent for dimerization. Biochemistry 32:10812-10818 (1993).

    Google Scholar 

  22. J. Slavik. Anilinonaphtalene sulfonate as a probe of membrane composition and function. Biochim. Biophys. Acta 694:1-25 (1982).

    Google Scholar 

  23. G. V. Semisotnov, N. A. Rodionova, O. I. Razgulyaev, V. N. Uversky, A. F. Gripas, and R. I. Gilmanshin. Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119-128 (1991).

    Google Scholar 

  24. W. R. Kirk, E. Kurian, and F. G. Prendergast. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(18') anilinonaphtalene binding to intestinal fatty acid binding protein. Biophys. J. 70:69-83 (1996).

    Google Scholar 

  25. D. Matulis and R. Lovrien. 1-Anilino-8-naphtalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys. J. 74:422-429 (1998).

    Google Scholar 

  26. D. Matulis, C. G. Baumann, V. A. Bloomfield, and R. E. Lovrien. 1-Anilino-8-naphtalene sulfonate as a protein conformational tightening agent. Biopolymers 49:451-458 (1999).

    Google Scholar 

  27. S. K. Banerjee and J. B. Mudd. Reaction of ozone with glycophorin in solution and in lipid vesicles. Arch. Biochem. Biophys. 295:84-89 (1992).

    Google Scholar 

  28. D. R. Goodlett, F. B. Armstrong, R. J. Creech, and R. B. van Breemen. Formylated peptides from cyanogen bromide digests identified by fast atom bombardement mass spectrometry. Anal. Biochem. 186:116-120 (1990).

    Google Scholar 

  29. G. P. Dado and S. H. Gellman. Redox control of secondary structure in a designed peptide. J. Am. Chem. Soc. 115:12609-12610 (1993).

    Google Scholar 

  30. R. C. Robinson, C. Radziejewski, D. I. Stuart, and E. Y. Jones. Structure of the brain-derived neurotrophic factor/neurotrophin 3 heterodimer. Biochemistry 34:4139-4146 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, J.L., Kolvenbach, C., Roy, S. et al. Metal-Catalyzed Oxidation of Brain-Derived Neurotrophic Factor (BDNF): Analytical Challenges for the Identification of Modified Sites. Pharm Res 17, 190–196 (2000). https://doi.org/10.1023/A:1007569431038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007569431038

Navigation