Skip to main content
Log in

The Ionic Strength Dependence of Rare Earth and Yttrium Fluoride Complexation at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Formation constants for the complexation of yttrium and rare earth elements(YREE) by fluoride ions have been measured at 25°C. The ionic strength (μ)dependence of YREE formation constants in perchlorate solution for ionicstrengths between 0 and 6 molar can be expressed aslogFβ1 (M, μ) =logFβ1 o (M) −3.066 μ0.5/(1 + 1.769 μ0.5)+ 0.1645 μwhere logFβ1 o(M) represents MF2+formation constants at zero ionic strength.The logFβ1 o(M) results obtained inthis work are: Y(4.46), La(3.62), Ce(3.86),Pr(3.84), Nd(3.82), Sm(4.15), Eu(4.27), Gd(4.24), Tb(4.37), Dy(4.39), Ho(4.28),Er(4.27), Tm(4.29), Yb(4.39), and Lu(4.25). The relative magnitudes of YREEformation constants are independent of ionic strength. The pattern oflogFβ1(M,μ),formation constants obtained in this work [relative magnitudes oflogFβ1 o (M)],exhibits a shallow minimum between Dy and Yb. In contrast to the smoothpattern of stability constants expected if fluoride were to interact with bare ions(with monotonically decreasing crystal radii between La and Lu), theinteractionof F with YREEs, which have extensive hydration spheres[M(H2O)8–9 3+] resultsin a relatively complex pattern of lanthanide stability constants. The fluoridecomplexation behavior of yttrium differs distinctly from the behavior of any rareearth. Although the crystal radius of Y3;pl is approximately equalto that of Ho3+,differences in the covalence/ionicity of Y3+ relative to therare earths leads to aYF2+ stability constant that exceeds that of any rare earthelement (REE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. D. Paul, L. S. Gallo, and J. B. vanCamp, J. Phys. Chem. 65, 441 (1961).

    Google Scholar 

  2. J. B. Walker and G. R. Choppin, Advan. Chem. Ser. 71, 127 (1967).

    Google Scholar 

  3. S. L. Lyle and S. J. Naqvi, J. Inorg. Nucl. Chem. 29, 2441 (1967).

    Google Scholar 

  4. B. N. Ivanov-Emin, V. A. Zaitseva, and A. M. Egorov, Russ. J. Inorg. Chem. 13, 1368 (1968).

    Google Scholar 

  5. T. Anfalt and D. Jagner, Anal. Chim. Acta 47, 483 (1969).

    Google Scholar 

  6. T. Eriksson and G. Johansson, Anal Chim. Acta 52, 465 (1970).

    Google Scholar 

  7. B. A. Bilal and P. Becker, J. Inorg. Nucl. Chem. 41, 1607 (1979).

    Google Scholar 

  8. B. A. Bilal, F. Herrmann, and W. Fleischer, J. Inorg. Nucl. Chem. 41, 347 (1979).

    Google Scholar 

  9. B. A. Bilal and P. Becker, in The Rare Earths in Modern Science and Technology, Vol. 2, G. J. McCarthy, J. J. Rhyne, and H. B. Silber, eds. (Plenum, New York, 1980), p.117.

    Google Scholar 

  10. M. P. Menon, J. Chem. Eng. Data 27, 81 (1982).

    Google Scholar 

  11. N. I. Avramenko, E. A. Andronov, V. V. Blokhin, and V. E. Mironov, Izv. Vyssh. Uchebn. Zaved. Khim. Teckhnol. 26, 155 (1983).

    Google Scholar 

  12. P. Becker and B. A. Bilal, J. Solution Chem. 14, 407 (1985).

    Google Scholar 

  13. M. P. Menon, J. James, and J. D. Jackson, J. Radioanal. Nucl. Chem. 102, 419 (1986).

    Google Scholar 

  14. M. P. Menon, J. James, and J. D. Jackson, Lanthanide Actinide Res. 2, 49 (1987).

    Google Scholar 

  15. M. P. Menon and J. James, J. Chem. Soc. Faraday Trans. I, 85, 2683 (1989).

    Google Scholar 

  16. S. L. Lyle and S. J. Naqvi, J. Inorg. Nucl. Chem. 28, 2993 (1966).

    Google Scholar 

  17. A. Aziz and S. L. Lyle, J. Inorg. Nucl. Chem. 32, 2383 (1970).

    Google Scholar 

  18. P. A. Baisden, P. M. Grant, W. F. Kinard, and R. A. Torres, Inorg. Chim. Acta 128, 127 (1987).

    Google Scholar 

  19. P. M. Grant, P. A. Baisden, W. F. Kinard, and R. A. Torres, Inorg. Chem. 27, 1156 (1988).

    Google Scholar 

  20. A. Aziz and S. L. Lyle, Anal. Chim. Acta 47, 49 (1969).

    Google Scholar 

  21. J. J. R. F. Da Silva and M. M. Queimado, Rev. Port. Quim. 15, 29 (1973).

    Google Scholar 

  22. A. Aziz and S. L. Lyle, J. Inorg. Nucl. Chem. 31, 3471 (1969).

    Google Scholar 

  23. N. Moulin, M. Hussonnois, L. Brillard, and R. Guillaumont, J. Inorg. Nucl. Chem. 37, 2521 (1975).

    Google Scholar 

  24. A. Aziz and S. L. Lyle, J. Inorg. Nucl. Chem. 31, 3471 (1969).

    Google Scholar 

  25. A. Aziz and S. L. Lyle, J. Inorg. Nucl. Chem. 32, 1925 (1970).

    Google Scholar 

  26. T. P. Makarova, A. V. Stepanov, and B. I. Shestakov, Russ. J. Inorg. Chem. 18, 783 (1973).

    Google Scholar 

  27. B. A. Bilal, in The Rare Earths in Modern Science and Technology, Vol. 2, G. J. McCarthy, J. J. Rhyne, H. B. Silber, eds. (Plenum, New York, 1980), p. 83.

    Google Scholar 

  28. M. P. Menon, J. Radioanal. Chem. 62, 283 (1981).

    Google Scholar 

  29. B. A. Bilal and V. Koss, J. Inorg. Nucl. Chem. 42, 629 (1980).

    Google Scholar 

  30. J. H. Lee and R. H. Byrne, J. Solution Chem. 22, 751 (1993).

    Google Scholar 

  31. J. Schijf and R. H. Byrne, Polyhedron 18, 2839 (1999).

    Google Scholar 

  32. E. N. Rizkalla and G. R. Choppin, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, K. A. Gschneidner, Jr. and L. Eyring, eds. (Elsevier, New York 1991), p. 393.

    Google Scholar 

  33. A. E. Martell and R. D. Hancock, Metal Complexes in Aqueous Solutions (Plenum Press, New York, 1996), pp. 6-12.

    Google Scholar 

  34. R. H. Smith and A. E. Martell, NIST Critically Selected Stability Constants of Metal Complexes Database, Version 5.0, NIST Database 46, 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, YR., Byrne, R.H. The Ionic Strength Dependence of Rare Earth and Yttrium Fluoride Complexation at 25°C. Journal of Solution Chemistry 29, 1089–1099 (2000). https://doi.org/10.1023/A:1005186932126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005186932126

Navigation