Skip to main content
Log in

Studies on the possible role of cation exchange capacity in the soil preference of mosses

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Moss species with a different soil preference with respect to its acidity and carbonate content also differ in their cation exchange capacity (leaf, stem, rhizoid), the acidiphile-calcifuges having lower C.E.C. values than the neutrophile-calcicoles. The higher the C.E.C. value, the more the divalent cations calcium and magnesium tend to be adsorbed as compared to the monovalents sodium and potassium, from an equinormal tetracationic solution. The increase in divalent adsorption is mainly due to calcium. Considering this differential adsorption of calcium and in view of data in literature on membrane characteristics, it appears that among the studied cations calcium is an important factor in the observed soil preference through its presence in the cell wall adsorbed fraction and thus in the membrane environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anschütz I and Gessner F 1952 Der Ionenaustausch bei Torfmoosen (Sphagnum). Flora 141, 178–236.

    Google Scholar 

  2. Ayadi A, Monnier A, Demarty M and Thellier M 1980 Echanges ioniques cellulaires: cas des plantes en milieu salé. Rôle particulier des parois cellulaires. Physiol. Vég. 18, 1, 89–104.

    CAS  Google Scholar 

  3. Bates J W 1976 Cell permeability and regulation of intracellular sodium concentration in a halophytic and a glycophytic moss. New Phytol. 77, 15–23.

    CAS  Google Scholar 

  4. Bates J W 1982 The role of exchangeable calcium in saxicolous calcicole and calcifuge mosses. New Phytol. 90, 239–252.

    CAS  Google Scholar 

  5. Bates J W and Brown D H 1974 The control of cation levels in seashore and inland mosses. New Phytol. 73, 483–495.

    CAS  Google Scholar 

  6. Bell C W and Walker R B 1957 Studies of cation exchange capacity on a surface area and a dry weight basis. Plant Physiol. 32, suppl. 2, 21–22.

    Google Scholar 

  7. Blanc-Aicard D 1955 Etudes préliminaires sur l'adsorption radiculaire des cations Ann. Agron. 4, 615–633.

    Google Scholar 

  8. Brehm K 1968 Die Bedeutung des Kationenaustausches für den Kationengehalt lebender Sphagnen. Planta Berlin 79, 324–345.

    CAS  Google Scholar 

  9. Brehm K 1971 Ein Sphagnum-Bult als Beispiel einer natürlichen Ionenaustauschersäule. Beitr. Biol. Pflanz. 47, 287–312.

    Google Scholar 

  10. Brehm K 1975 Mineralstoffernährung und Kationenaustausch auf Hochmooren. Biologie in unserer Zeit 5, 3, 85–91.

    Google Scholar 

  11. Büscher P 1979 Ekologische aspecten van de kationenopname bij mossen. Licentieverhandeling Vrije Universiteit Brussel, 145 p.

  12. Büscher P and Koedam N 1979 Ecological aspects of cation absorption in several mosses and ferns. Bull. Soc. R. Bot. Belg. 112, 216–229.

    Google Scholar 

  13. Clymo R S 1963 Ion exchange in Sphagnum and its relation to bog ecology. Ann. Bot. London N.S. 27, 106, 309–324.

    CAS  Google Scholar 

  14. Craigie J S and Maass W S G 1966 The cation exchanger inSphagnum spp. Ann. Bot. London N.S. 30, 117, 153–154.

    CAS  Google Scholar 

  15. Crooke W M 1964 The measurement of the cation-exchange capacity of plant roots. Plant and Soil 21, 1, 43–49.

    Article  Google Scholar 

  16. Crooke W M and Knight A H 1971 Crop composition in relation to soil pH and root cation-exchange capacity. J. Sci. Food Agri. 22, 235–241.

    CAS  Google Scholar 

  17. Crooke W M, Knight A H and Macdonald I R 1960 Cation-exchange capacity and pectin gradients in leek root segments. Plant and Soil 13, 2, 123–127.

    Article  CAS  Google Scholar 

  18. Cunningham R K and Nielsen K F 1963 Evidence against relationships between root cation exchange capacity and cation uptake by plants. Nature London 200, 1344–1345.

    CAS  Google Scholar 

  19. Dahse I, Keller E R J and Müller E 1981 Ion exchange properties of the corn coleoptile cell wall space. II. Concentration potentials and biionic potentials Biochem. Physiol. Pflanz. 176, 8, 687–690.

    CAS  Google Scholar 

  20. Emerton Williams D 1962 Anion-exchange properties of plant root surfaces. Science 138, 153–154.

    Google Scholar 

  21. Ghorbal M H 1979 Absorption du calcium, localisation et rôle dans la perméabilité membranaire, relation avec le caractère calcicole ou calcifuge. Thèse de docteur-ès-sciences naturelles. Université des sciences et techniques du Languedoc, Montpellier, 402 p.

    Google Scholar 

  22. Ghorbal M H and Grignon C 1979 Analyse des efflux ioniques dans les racines de févérole et de lupin jaune: localisation des effets de Ca++ et H+. Physiol. Vég. 17 1, 167–181.

    CAS  Google Scholar 

  23. Ghorbal M H, Salsac L and Grignon C 1978 Action du calcium sur l'exsorption du potassium en milieu acide par des racines excisées de plantes calcicoles ou calcifuges. Physiol. Vég. 16, 3, 491–503.

    CAS  Google Scholar 

  24. Gibrat R and Grignon C 1977 Fixation de calcium par les membranes microsomales de lupin et de févérole. C. R. Acad. Sci. Ser. D 285, 1307–1310.

    CAS  Google Scholar 

  25. Grignon C and Rossignol M 1979 Interactions Ca++, H+ avec les parois et membranes de racines; intervention des phospholipides. Rapport sur les travaux de Mohamed-Habib Ghorbal, Rémy Gibrat, Claude Grignon, Michel Rossignol, Hervé Sentenac. Compte rendu de fin d'étude d'une recherche financée par la délégation générale à la recherche scientifique et technique. 43 p.

  26. Gunning B E S and Steer M W 1975 Ultrastructure and the Biology of Plant Cells. Edward Arnold Ltd, London VI+312 p.

    Google Scholar 

  27. Haynes R J 1980 Ion exchange properties of roots and ionic interactions within the root apoplasm: their role in ion accumulation by plants. Bot. Rev. 46, 75–99.

    CAS  Google Scholar 

  28. Heintze S G 1961 Studies on cation-exchange capacities of roots. Plant and Soil 13, 4, 365–383.

    CAS  Google Scholar 

  29. Helmy A K and Elgabaly M M 1958 Exchange capacity of plant roots. I. Factors affecting the titration value. II. Some factors affecting the cation exchange capacity. Plant and Soil 10, 1, 78–100.

    CAS  Google Scholar 

  30. Keller E R J, Dahse I and Müller E 1980 Ion exchange properties of the corn coleoptile cell wall space. I. Concentration potentials and fixed charge activity. Biochem. Physiol. Pflanz. 175, 643–652.

    CAS  Google Scholar 

  31. Keller P and Deuel H 1957 Kationenaustauschkapazität und Pektingehalt von Pflanzenwurzeln. Z. Pflanzernaehr. Dueng. Bodenkd. 79, 124, 2, 119–131.

    CAS  Google Scholar 

  32. Keller P and Deuel H 1958 Kationenaustauschgleichgewichte an abgetöteten Pflanzenwurzeln. Verhandlungen der II. und IV. Kommission der internationalen bodenkundlichen Gesellschaft, Hamburg, 2, 164–168.

    Google Scholar 

  33. Knight A H, Crooke W M and Inkson R H E 1961 Cation-exchange capacities of tissues of higher and lower plants and their related uronic acid contents. Nature London 192, 142–143.

    CAS  PubMed  Google Scholar 

  34. Lamant A 1977 Isolement et identification du plasmalemme chez les végétaux, intervention des systèmes membranaires dans l'absorption du calcium. Thèse de docteur-ès-sciences. Université de Paris VII, 181 p.

  35. Landwehr J 1978 Atlas van de Nederlandse bladmossen. Koninklijke Nederlandse Natuurhistorische Vereniging, Amsterdam, 3d ed., 560 p.

    Google Scholar 

  36. Mengel K 1961 Die Donnan-Verteilung der Kationen im freien Raum der Pflanzenwurzel und ihre Bedeutung für die aktive Kationenaufnahme. Z. Pflanzernaehr. Dueng. Bodenkd. 95, 240–253.

    CAS  Google Scholar 

  37. Mouat M C H and Walker T W 1959 Competition for nutrients between grasses and white clover. II. Effect of root cation exchange capacity and rate of emergence of associated species. Plant and Soil 11, 1, 41–52.

    CAS  Google Scholar 

  38. Mugwira L M and Elgawhary S M 1979 Aluminium accumulation and tolerance of triticale and wheat in relation to root cation exchange capacity. Soil Sci. Soc. Am. Proc. 43, 736–740.

    CAS  Google Scholar 

  39. Odu E A 1978 The adaptive importance of moss rhizoids for attachment to the substratum. J. Bryol. 10, 163–181.

    Google Scholar 

  40. Odu E A 1978 The effect on rhizoid growth of the occurrence of mosses with vascular plants. J. Bryol. 10, 183–189.

    Google Scholar 

  41. Orgell W H 1957 Sorptive properties of plant cuticle. Proc. Iowa Acad. 64, 189–198.

    Google Scholar 

  42. Osman Abu-Zeid M 1975 Root cation exchange capacity of sugarcane: an evaluation of methods. J. Sci. Food Agri. 26, 915–922.

    Google Scholar 

  43. Paul P E 1980 Le problème de la calcicolie-calcifugie des plantes à fleurs, point de vue d'un écologiste. Bull. Soc. Bot. Fr. Lettres botaniques 127, 4, 365–371.

    Google Scholar 

  44. Preston R D 1974 The physical Biology of Plant Cell Walls. Chapman and Hall, London. XIV +491 p.

    Google Scholar 

  45. Puustjärvi V 1968 Cation exchange capacity in Sphagnum mosses and its effect on nutrient and water absorption. Peat Plant News 1, 4, 54–58.

    Google Scholar 

  46. Rossignol M 1976 Relations entre le caractère calcifuge ou calcicole de différentes espèces et la composition lipidique de leurs racines. C.R. Acad. Sci. Ser. D 283, 1405–1407.

    CAS  Google Scholar 

  47. Rossignol M 1977 Mesure de la fixation du calcium sur les phospholipides extraits des racines de lupin jaune et de févérole. Physiol. Vég. 15, 4, 811–816.

    CAS  Google Scholar 

  48. Salsac L and Lamant A 1973 Etudes des échanges protons-calcium dans les racines d'une plante calcicole (févérole) et d'une plante calcifuge (lupin jaune). Oecol. Plant. 8, 3, 263–278.

    CAS  Google Scholar 

  49. Schönherr J and Bukovac M J 1973 Ion exchange properties of isolated tomato fruit cuticular membrane: exchange capacity, nature of fixed charges and cation selectivity. Planta Berlin 109, 73–93.

    Google Scholar 

  50. Schwarzmaier U and Brehm K 1975 Detailed characterization of the cation exchanger inSphagnum magellanicum Brid. Z. Pflanzenphysiol. 75, 250–255.

    CAS  Google Scholar 

  51. Sentenac H 1979 Mesures des équilibres ioniques entre les parois squelettiques et le milieuétude de quelques problèmes posés par l'obtention et l'interprétation des résultats. Thèse de troisième cycle. Université des sciences et techniques du Languedoc. Physiologie de la nutrition des végétaux-Montpellier, 152 p.

  52. Smith A J E 1978 The Moss Flora of Britain and Ireland, Cambridge University Press, Cambridge, 706 p.

    Google Scholar 

  53. Smith R L and Wallace A 1956 Cation-exchange capacity of roots and its relation to calcium and potassium content of plants. Soil Sci. 81, 2, 97–109.

    CAS  Google Scholar 

  54. Spearing A M 1972 Cation-exchange capacity and galacturonic acid content of several species of Sphagnum in Sandy Ridge Bog, Central New York State. Bryologist 75, 154–158.

    CAS  Google Scholar 

  55. Straub R 1964 Untersuchungen über die Kationenumtauschkapazität der Wurzeln von Trockenrasen- und Wiesenpflanzen. Inaugural-Dissertation zur Erlangung der Doktorwürde der hohen naturwissenschaftlichen Fakultät der Julius-Maximilians-Universität zu Würzburg. 99 p.

  56. Tamm C O 1964 Growth ofHylocomium splendens in relation to tree canopy. Bryologist 67, 4, 423–431.

    Google Scholar 

  57. Vose P B and Randall P J 1962 Resistance to aluminium and manganese toxicities in plants related to variety and cation exchange capacity. Nature London 196, 85–86.

    CAS  Google Scholar 

  58. Wacquant J P 1968 Capacités d'échange cationique racinaire chez quelques populations d'Anagallis arvensis L. sensu lato. C.R. Acad. Sci. Ser. D 266, 1580–1582.

    Google Scholar 

  59. Wacquant J P 1974 Recherches sur les propriétés d'adsorption cationique des racines (rôle physiologique et importance écologique). Thèse d'Etat-ès-Sciences. Université de Montpellier II, 155 p.

  60. Wacquant J P 1977 Adsorption racinaire des ionsFe selon les espéces. C. R. Acad. Sci. Ser. D 284, 2115–2117.

    CAS  Google Scholar 

  61. Wacquant J P 1980 Distribution of ion exchange groups in plant root according to the type and the species. Abstract 2nd international symposium: structure and function of roots. Bratislava, 75.

  62. Wacquant J P and Passama L 1978 Proportions d'ions K+ dans la plante et résistance au sel de divers halophytes: relation avec les propriétés d'adsorption des racines. Soc. Bot. Fr., Actualités botaniques, 3–4, 111–121.

    Google Scholar 

  63. Wiersum L K and Bakema K 1959 Competitive adaptation of the cation exchange capacity of roots. Plant and Soil 11, 3, 287–292.

    Article  Google Scholar 

  64. Williams D E and Coleman N T 1950 Cation exchange properties of plant root surfaces. Plant and Soil 2, 2, 243–256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are granted a scholarship ‘aspirant-vorser’ of the Belgian ‘Nationaal Fonds voor Wetenschappelijk Onderzoek’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koedam, N., Büscher, P. Studies on the possible role of cation exchange capacity in the soil preference of mosses. Plant Soil 70, 77–93 (1983). https://doi.org/10.1007/BF02374752

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02374752

Key words

Navigation