Skip to main content
Log in

Proton-ionizable crown compounds. 17. Transport studies of alkali metal ions in a H2O-CH2Cl2-H2O liquid membrane system by macrocycles containing two sulfonamide groups derived fromo- andm-phenylene diamine

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

The transport of alkali metal cations by several macrocycles possessing two sulfonamide groups as a part of an 18-, 20-, or 21-membered macroring has been studied. Some of these compounds were found to be more effective transport agents than the proton-ionizable pyridone- and triazole-containing crown ethers reported previously. The factors affecting transport, such as ring size, source and receiving phase pH, and the nature of the groups attached to the sulfonamide nitrogen atoms were examined. Also, extraction experiments by some of the ligands were performed. The behavior of sulfonamide type crowns in single and competitive transport of the alkali metal cations is explained. The mechanism of transport appears to be complex. Transport of one or two cations per molecule of the disulfonamide carriers occurs. Complexation of these cations appears to occur both within and outside the macrocycle cavity. Our results also suggest that kinetic factors may play a significant role in transport rates and selectivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Permanent address for J. F. B. and M. B.: Institute of Inorganic Chemistry and Technology, Polytechnical University, 80–952, Gdansk, Poland.

  2. Separation and Purification: Critical Needs and Opportunities, Report by the National Research Council, National Academy Press, Washington, DC, 1987.

  3. R. M. Izatt, G. C. LindH, G. A. Clark, Y. Nakatsuji, J. S. Bradshaw, J. D. Lamb, and J. J. Christensen:J. Chem. Soc. Chem. Commun. 1676 (1985).

  4. R. M. Izatt, G. C. LindH, G. A. Clark, Y. Nakatsuji, J. S. Bradshaw, J. D. Lamb, and J. J. Christensen:J. Membrane Sci. 31, 1 (1987).

    Google Scholar 

  5. R. M. Izatt, G. C. LindH, R. L. Bruening, P. Huszthy, J. D. Lamb, J. S. Bradshaw, and J. J. Christensen:J. Incl. Phenom. 5, 739 (1987).

    Google Scholar 

  6. J. F. Biernat, M. Bochenska, J. S. Bradshaw, H. Koyama, G. C. LindH, J. D. Lamb, J. J. Christensen, and R. M. Izatt:J. Incl. Phenom. 5, 729 (1987).

    Google Scholar 

  7. R. A. Bartsch, B. F. Czech, S. I. Kang, L. E. Stewart, W. Walkowiak, W. A. Charewicz, G. S. Heo, and B. Son:J. Am. Chem. Soc. 107, 4997 (1985).

    Google Scholar 

  8. R. C. Helgeson, J. M. Timko, and D. J. Cram:J. Am. Chem. Soc. 95, 3023 (1973).

    Google Scholar 

  9. C. Thomas, C. Sauterey, M. Castaing, C. M. Gary-Bobo, J.-M. Lehn, and P. Plumere:Biochem. Biophys. Res. Commun. 116, 981 (1983).

    PubMed  Google Scholar 

  10. A. Hriciga and J.-M. Lehn:Proc. Natl. Acad. Sci. USA 80, 6426 (1983).

    PubMed  Google Scholar 

  11. L. M. Dulyea, T. M. Fyles, and D. M. Whitfield:Can. J. Chem. 62, 498 (1984).

    Google Scholar 

  12. C. M. Browne, G. Ferguson, M. A. McKervey, D. L. Mulholland, T. O'Connor, and M. Parvez:J. Am. Chem. Soc. 107, 2703 (1985).

    Google Scholar 

  13. S. R. Izatt, R. T. Hawkins, J. J. Christensen, and R. M. Izatt:J. Am. Chem. Soc. 107, 63 (1985).

    Google Scholar 

  14. J. S. Bradshaw, M. L. Colter, Y. Nakatsuji, N. O. Spencer, M. F. Brown, R. M. Izatt, G. Arena, P-K, Tse, B. E. Wilson, J. D. Lamb, N. K. Dalley, F. G. Morin, and D. M. Grant:J. Org. Chem. 50, 4865 (1985).

    Google Scholar 

  15. J. S. Bradshaw, Y. Nakatsuji, P. Huszthy, B. E. Wilson, N. K. Dalley, and R. M. Izatt:J. Heterocycl. Chem. 23, 353 (1986).

    Google Scholar 

  16. J. S. Bradshaw, D. A. Chamberlin, P. E. Harrison, B. E. Wilson, G. Arena, N. K. Dalley, R. M. Izatt, F. G. Morin, and D. M. Grant:J. Org. Chem. 50, 3065 (1985).

    Google Scholar 

  17. J. S. Bradshaw, R. B. Nielsen, P-K. Tse, G. Arena, B. E. Wilson, N. K. Dalley, J. D. Lamb, J. J. Christensen, and R. M. Izatt:J. Heterocycl. Chem. 23, 361 (1986).

    Google Scholar 

  18. J. S. Bradshaw, C. W. McDaniel, B. D. Skidmore, R. B. Nielsen, B. E. Wilson, N. K. Dalley, and R. M. Izatt:J. Heterocycl. Chem. 24, 1085 (1987).

    Google Scholar 

  19. J. F Biernat, J. S. Bradshaw, B. E. Wilson, N. K. Dalley, and R. M. Izatt:J. Heterocycl. Chem. 23, 1667 (1986).

    Google Scholar 

  20. J. S. Bradshaw, H. Koyama, N. K. Dalley, R. M. Izatt, J. F. Biernat, and M. Bochenska:J. Heterocycl. Chem. 24, 1077 (1987).

    Google Scholar 

  21. G. Dauphin and A. Kergomard:Bull. Soc. Chim. France 3, 486 (1961).

    Google Scholar 

  22. J. D. Lamb, R. M. Izatt, D. G. Garrick, J. S. Bradshaw, and J. J. Christensen:J. Membr. Sci. 9, 83 (1981).

    Google Scholar 

  23. M. Bochenska, J. F. Biernat, M. Topolski, J. S. Bradshaw, R. M. Izatt, and R. L. Bruening:J. Incl. Phenom. to appear.

  24. R. M. Noyes:J. Am. Chem. Soc. 84, 513 (1962).

    Google Scholar 

  25. J.-P. Behr, M. Kirch, and J.-M. Lehn:J. Am. Chem. Soc. 107, 241 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased: September 5, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izatt, R.M., Lindh, G.C., Biernat, J.F. et al. Proton-ionizable crown compounds. 17. Transport studies of alkali metal ions in a H2O-CH2Cl2-H2O liquid membrane system by macrocycles containing two sulfonamide groups derived fromo- andm-phenylene diamine. J Incl Phenom Macrocycl Chem 7, 487–499 (1989). https://doi.org/10.1007/BF01080459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01080459

Key words

Navigation