Skip to main content
Log in

Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Leafy thalli of the red algaPorphyra yezoensis Ueda, initiated from conchospores released from free-living conchocelis, were cultured using aeration with high CO2. It was found that the higher the CO2 concentration, the faster the growth of the thalli. Aeration with elevated CO2 lowered pH in dark, but raised pH remarkably in light with the thalli, because the photosynthetic conversion of HCO 3 to OH and CO2 proceeded much faster than the dissociation of hydrated CO2 releasing H+. Photosynthesis of the alga was found to be enhanced in the seawater of elevated dissolved inorganic carbon (DIC, CO2 + HCO 3 + CO 3 ). It is concluded that the increased pH in the light resulted in the increase of DIC in the culture media, thus enhancing photosynthesis and growth. The relevance of the results to removal of atmospheric CO2 by marine algae is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asada K (1981) Biological carboxylations. pp. 193–199. In Inoue S, Yamaguchi N (eds), Organic and Bio-organic Chemistry of Carbon Dioxide. Kodansha, Tokyo.

    Google Scholar 

  • Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28: 568–574.

    CAS  Google Scholar 

  • Axelsson L, Uusitalo J (1988) Carbon acquisition strategies for marine macroalgae. I. Utilization of proton exchanges visualized during photosynthesis in a closed system. Mar. Biol. 97: 295–300.

    CAS  Google Scholar 

  • Badger MR, Andrews TJ (1982) Photosynthesis and inorganic carbon usage by the marine cynobacterium,Synechococcus sp. Pl. Physiol. 70: 517–523.

    CAS  Google Scholar 

  • Beer S, Israel A, Drechsler Z, Cohen Y (1990) Photosynthesis inUlva fasciata V. Evidence for an inorganic carbon concentrating system, and ribulose-1,5-bisphosphate carboxylase/oxygenase CO2 kinetics. Plant Physiol. 94: 1542–1546.

    CAS  Google Scholar 

  • Bidwell RGS, McLachlan J (1985) Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J. exp. mar. Biol. Ecol. 86: 15–46.

    Article  CAS  Google Scholar 

  • Brechignac F, Andre M (1985) Continuous measurements of the free dissolved CO2 concentration during photosynthesis of marine plants. Plant Physiol. 78: 551–554.

    CAS  Google Scholar 

  • Cook CM, Colman B (1987) Some characteristics of photosynthetic inorganic carbon uptake of a marine macrophytic red alga. Plant Cell Environ. 10: 275–278.

    CAS  Google Scholar 

  • Cook CM, Lanaras T, Colman B (1986) Evidence for bicarbonate transport in species of red and brown macrophytic marine algae J. exp. Bot. 37: 977–984.

    CAS  Google Scholar 

  • Cooper TG, Filmer D, Wishnick M, Lane MDJ (1969) The active species of ‘CO2’ utilized by ribulose diphosphate carboxylase. Biol. Chem. 244: 10812–1083.

    Google Scholar 

  • Gao K (1989) Studies on Photosynthesis ofSargassum plants. Doctoral thesis, Kyoto University.

  • Gao K (1990) Diurnal photosynthetic performance ofSargassum horneri. Jpn. J. Phycol. 38, 163–165. (in Japanese with Eng. abstract).

    Google Scholar 

  • Gao K, Aruga Y (1987) Preliminary studies on the photosynthesis and respiration ofPorphyra yezoensis under emersed conditions. J. Tokyo Univ. Fish. 74: 51–65.

    Google Scholar 

  • Gao K, Umezaki I. 1989. Studies on diurnal photosynthetic performance ofSargassum thunbergii I. Changes in photosynthesis under natural sunlight. Jpn. J. Phycol. 37: 89–98.

    CAS  Google Scholar 

  • Holbrook GP, Beer S, Spencer WE, Reiskind JB, Davis JS, Bowes G (1988) Photosynthesis in marine macroalgae: evidence for carbon limitation. Can. J. Bot. 66: 577–582.

    CAS  Google Scholar 

  • Johnston AM, Raven JA (1986) The utilization of bicarbonate ions by the macroalgaAscophyllum nodosum (L.) Le Jolis. Plant Cell Envir. 9: 175–184.

    CAS  Google Scholar 

  • Johnston AM, Raven JA (1990) Effects of culture in high CO2 on the photosynthetic physiology ofFucus serratus. Br. Phycol. J. 25: 75–82.

    Google Scholar 

  • Jollife EA, Tregunna EB (1970) Studies on HCO 3 ion uptake during photosynthesis in benthic marine algae. Phycologia 9: 293–303.

    Google Scholar 

  • Kato M, Aruga Y (1984) Comparative studies on the growth and photosynthesis of the pigmentation mutants ofPorphyra yezoensis. Jap. J. Phycol. 32: 333–347.

    Google Scholar 

  • Kremer BP, Kuppers U (1977) Carboxylating enzymes and pathway of photosynthetic carbon assimilation in different marine algae — evidence for the C4-pathway? Planta 133: 191–196.

    Article  CAS  Google Scholar 

  • Lignell A, Pedersen M (1989) Effects of pH and inorganic carbon concentration on growth ofGracilaria secundata. Br. Phycol. J. 24: 83–89.

    Google Scholar 

  • Maberly SC (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 26: 439–449.

    Article  CAS  Google Scholar 

  • Madsen TV, Maberly SC (1990) A comparison of air and water as environments for photosynthesis by the intertidal algaFucus spiralis (Phaeophyta). J. Phycol. 26: 24–30.

    Article  Google Scholar 

  • Merrill JE, Mimuro M, Aruga Y, Fujita Y (1983) Light-harvesting for photosynthesis in four strains of the red algaPorphyra yezoensis having different phycobilin contents. Pl. Cell Physiol. 24: 261–266.

    CAS  Google Scholar 

  • Miura A (1990) Present tends and perspective inPorphyra (Nori) breeding — genetics of pigmentation mutants inPorphyra yezoensis. Suisan-ikushu (Fish. Genetics & Breeding Science) 15: 19–30. (in Japanese).

    Google Scholar 

  • Munoz J, Merrett MJ (1988) Inorganic-carbon uptake by a small-celled strain ofStichococcus bacillaris. Planta 175: 460–464.

    CAS  Google Scholar 

  • Munoz J, Merrett MJ (1989) Inorganic-carbon transport in some marine eukaryotic microalgae. Planta 178: 450–455.

    Article  CAS  Google Scholar 

  • Oohusa T (1980) Diurnal rhythm in the rates of cell division, growth and photosynthesis ofPorphyra yezoensis cultured in the laboratory. Bot. Mar. 23: 1–5.

    Google Scholar 

  • Patel BN, Merrett MJ (1986) Inorganic-carbon uptake by the marine diatomPhaeodactylum tricornutum. Planta 169: 222–227.

    CAS  Google Scholar 

  • Provasoli L (1966) Media and prospects for the cultivation of marine algae. p. 63–75. In Watanabe A, Hattori A (eds), Cultures and Collections of Algae (Proc. U.S.-Japan Conf. Hakone, Sept. 1966). Jap. Soc. Plant Physiol.

  • Rees TAV (1984) Sodium dependent photosynthetic oxygen evolution in a marine diatom. J. exp. Bot. 35: 332–337.

    CAS  Google Scholar 

  • Reiskind JB, Seamon PT, Bowes G (1988) Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol. 87: 686–692.

    CAS  Google Scholar 

  • Sand-Jensen K, Gordon DM (1984) Differential ability of marine and freshwater macrophytes to utilize HCO 3 and CO2. Mar. Biol. 80: 247–253.

    Article  CAS  Google Scholar 

  • Silverman DN (1991) The catalytic mechanism of carbonic anhydrase. Can. J. Bot. 69: 1070–1078.

    CAS  Google Scholar 

  • Smith RG, Bidwell RGS (1987) Carbonic anhydrase-dependent inorganic carbon uptake by the red macroalga,Chondrus crispus. Plant Physiol. 83: 735–738.

    CAS  Google Scholar 

  • Stum W, Morgan JJ (1981) Aquatic Chemistry. Wiley.

  • Surif MB, Raven JA (1989) exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78: 97–105.

    Article  Google Scholar 

  • Tajiri S, Aruga Y (1984) Effect of emersion on the growth and photosynthesis of thePorphyra yezoensis thallus. Jap. J. Phycol. 32: 134–146.

    Google Scholar 

  • Thomas EA, Tregunna EB (1968) Bicarbonate ion assimilation in photosynthesis bySargassum muticum. Can. J. Bot. 46: 411–415.

    CAS  Google Scholar 

  • Tseng CK, Sweeney BM (1946) Physiological studies ofGelidium cartilagineum. I. Photosynthesis, with special reference to the carbon dioxide factor. Am. J. Bot. 33: 706–715.

    CAS  Google Scholar 

  • Wheeler WN (1980) Effect of boundary layer transport on the fixation of carbon by the giant kelpMacrocystis pyrifera. Mar. Biol. 56: 103–110.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, K., Aruga, Y., Asada, K. et al. Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3, 355–362 (1991). https://doi.org/10.1007/BF02392889

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392889

Key words

Navigation