Skip to main content
Log in

Offspring size in Daphnia: does it pay to be overweight?

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Variation in offspring size and number has beendescribed for a wide range of organisms. In this studyI investigated the relationship between resource levelof the mother and size of her offspring in thecladoceran Daphnia magna, in order to assess whetheroffspring produced at different food levels areoptimal in size for these food levels. Optimaloffspring size was defined as the size of offspringthat yields the highest parental fitness (i.e.offspring of optimal size have the highest juvenilefitness per unit maternal effort invested in them). Iobserved that especially at the higher food levels,daphnids produced offspring that are larger than thecomputed optimal offspring size at these food levels.I interpret this as a mechanism to avoid starvation ofneonates in the case of suddenly deteriorating foodconditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, G., 1983. Measuring the cost of reproduction. 3. The correlation structure of the early life history of Daphnia pulex. Oecologia 60: 378–383.

    Google Scholar 

  • Boersma, M., 1995. The allocation of resources to reproduction in Daphnia galeata: Against the odds? Ecology 76: 1251–1261.

    Google Scholar 

  • Boersma, M., 1997. Offspring size and parental fitness in Daphnia magna. Evol. Ecol.: 11: 439–450.

    Google Scholar 

  • Boersma, M., O. F. R. van Tongeren & W. M. Mooij, 1996. Seasonal patterns in the mortality of Daphniaspecies in a shallow lake. Can. J. Fish. aquat. Sci. 53: 18–28.

    Google Scholar 

  • Bradley, M. C., D. J. Baird & P. Calow, 1991. Mechanisms of energy allocation to reproduction in the cladoceran Daphnia magna Straus. Biol. J. Linn. Soc. 44: 325–333.

    Google Scholar 

  • De Meester, L., 1994. Life histories and habitat selection in Daphnia–divergent life histories of D. magnaclones differing in phototactic behaviour. Oecologia 97: 333–341.

    Google Scholar 

  • Ebert, D., 1993. The trade-off between offspring size and number in Daphnia magna–the influence of genetic, environmental and maternal effects. Arch. Hydrobiol. Suppl. 90: 453–473.

    Google Scholar 

  • Ebert, D., 1994. Fractional resource allocation into few eggs–Daphnia as an example. Ecology 75: 568–571.

    Google Scholar 

  • Ebert, D.& J. Jacobs, 1991. Differences in life-history and aging in 2 clonal groups of Daphnia cucullataSars (Crustacea, Cladocera). Hydrobiologia 225: 245–253.

    Google Scholar 

  • Ebert, D. & L. Y. Yampolsky, 1992. Family planning in Daphnia: when is clutch size determined? Russian J. aquat. Ecol. 2: 143–148.

    Google Scholar 

  • George, D. G. & R. W. Edwards, 1976. The effect of wind on the distribution of chlorophyll a and crustacean plankton in a shallow eutrophic reservoir. J. appl. Ecol. 13: 667–692.

    Google Scholar 

  • Glazier, D. S., 1992. Effects of food, genotype, and maternal size and age on offspring investment in Daphnia magna. Ecology 73: 910–926.

    Google Scholar 

  • Guisande, C. & Z. M. Gliwicz, 1992. Egg size and clutch size in 2 Daphniaspecies grown at different food levels. J. Plankton Res. 14: 997–1007.

    Google Scholar 

  • Harris, G. P., 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management. Can. J. Fish. aquat. Sci. 37: 877–900.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, O. Sortkjær, E. Mortensen & P. Kristensen, 1990. Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Søbygård, Denmark. Hydrobiologia 191: 149–164.

    Google Scholar 

  • Lack, D., 1947. The significance of clutch size. Ibis 89: 309–352.

    Google Scholar 

  • Lampert, W., 1993. Phenotypic plasticity of the size at first reproduction in Daphnia: the importance of maternal size. Ecology 74: 1455–1466.

    Google Scholar 

  • Lampert, W. & I. Trubetskova, 1996. Juvenile growth rate as a measure of fitness in Daphnia. Funct. Ecol. 10: 631–635.

    Google Scholar 

  • Lampert, W., R. D. Schmitt & P. Muck, 1988. Vertical migration of freshwater zooplankton: test of some hypotheses predicting a metabolic advantage. Bull. Mar. Sci. 43: 620–640.

    Google Scholar 

  • Lynch, M. & R. Ennis, 1983. Resource availability, maternal effects, and longevity. Exper. Geront. 18: 147–165.

    Google Scholar 

  • Malone, B. J. & D. J. McQueen, 1983. Horizontal patchiness in zooplankton populations in two Ontario kettle lakes. Hydrobiologia 99: 101–124.

    Google Scholar 

  • Müller-Navarra, D., 1993. Quantifizierung von Nahrungsqualität für herbivores Zooplankton. PhD Thesis, University of Kiel, 137 pp.

  • Parker, G. A. & M. Begon, 1986. Optimal egg size and clutch size: effects of environment and maternal phenotype. Am. Nat. 128: 573–592.

    Google Scholar 

  • Ridley, M., 1993. Evolution. Blackwell. Boston, 670 pp.

    Google Scholar 

  • Smith C. C. & S. D. Fretwell, 1974. The optimal balance between size and number of offspring. Am. Nat. 108: 499–506.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. Freeman and Company, San Francisco.

    Google Scholar 

  • Spaak, P. & J. R. Hoekstra, 1995. Life history variation and the coexistence of a Daphniahybrid with its parental species. Ecology 76: 553–564.

    Google Scholar 

  • Spitze, K., 1992. Predator-mediated plasticity of prey life history and morphology–Chaoborus americanuspredation on Daphnia pulex. Am. Nat. 139: 229–247.

    Google Scholar 

  • Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford, 249 pp.

    Google Scholar 

  • Stibor, H., 1995. Chemische Informationen in limnischen Räuber-Beute Systemen: Der Effekt von Räubersignalen auf den Lebenszyklus von Daphniaspp. (Crustacea: Cladocera). PhD Thesis, University of Kiel, 150 pp.

  • Tessier, A. J. & N. L. Consolatti, 1989. Variation in offspring size in Daphniaand consequences for individual fitness. Oikos 56: 269–276.

    Google Scholar 

  • Tessier, A. J. & N. L. Consolatti, 1991. Resource quantity and offspring quality in Daphnia. Ecology 72: 468–478.

    Google Scholar 

  • Tessier, A. J., L. L. Henry, C. E. Goulden & M. W. Durand, 1983. Starvation in Daphnia: Energy reserves and reproductive allocation. Limnol. Oceanogr. 28: 667–676.

    Google Scholar 

  • Threlkeld, S. T., 1976. Starvation and the size structure of zooplankton communities. Freshwat. Biology 6: 489–496.

    Google Scholar 

  • van Noordwijk, A. J. & G. de Jong, 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128: 137–142.

    Google Scholar 

  • Vijverberg, J. & A. F. Richter, 1982. Population dynamics and production of Daphnia hyalinaLeydig and Daphnia cucullataSars in Tjeukemeer. Hydrobiologia 95: 235–259.

    Google Scholar 

  • Vijverberg, J., R. D. Gulati & W.M. Mooij, 1993. Food-web studies in shallow eutrophic lakes by the Netherlands Institute of Ecology: Main results, knowledge gaps and new perspectives. Neth. J. aquat. Ecol. 27: 35–49.

    Google Scholar 

  • Weider, L. J., 1993. Niche breadth and life history variation in a hybrid Daphniacomplex. Ecology 74: 935–943.

    Google Scholar 

  • Winkler, D.W. & K. Wallin, 1987. Offspring size and number: a life history model linking effort per offspring and total effort. Am. Nat. 129: 708–720.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boersma, M. Offspring size in Daphnia: does it pay to be overweight?. Hydrobiologia 360, 79–88 (1997). https://doi.org/10.1023/A:1003184214186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003184214186

Navigation