Skip to main content
Log in

Bacteria as a source of phosphorus for zooplankton

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The utilization of bacterial phosphorus in zooplankton metabolism was investigated using radio-phosphorus labelled natural bacteria as food source for zooplankton in feeding experiments. Incorporation of labelled bacteria was clearly related to the species' ability to graze on bacteria, with the cladoceran Daphnia reaching the highest biomass-specific activity and the copepod Acanthodiaptomus the lowest. Within Daphnia, juveniles had a higher biomass-specific uptake of phosphorus than adults. This was presumably caused by higher growth rates of the juveniles rather than age-specific differences in the ability to feed on bacteria, supported by the observation that the juveniles had the highest specific P-content. Retention of ingested 32P from labelled particles exceeded 80%, indicating higher assimilation efficiencies on phosphorus compared with carbon. In the investigated humic lake, approximately 75% of the phosphorus in grazable particles was bound in bacterial cells, making bacteria the most important source of P to the bacterivore zooplankton species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, T. & D. O. Hessen, 1988. Carbon, nitrogen and phosphorus content of common crustacean zooplankton species. In: Hessen D. O.: Carbon metabolism in the humic lake, with special reference to feeding and interactions in the zooplankton community. Dr. phil. thesis. Univ. Oslo.

  • Boudouin, M. F. & O. Ravera, 1972. Weight, size and chemical composition of some freshwater zooplankters: Daphnia hyalina (Leydig). Limnol. Oceanogr. 17: 645–649.

    Google Scholar 

  • Boudouin, M. F. & P. Scoppa, 1975. The determination of nucleic acids in freshwater plankton and its ecological implications. Freshwat. Biol. 5: 115–120.

    Article  Google Scholar 

  • den Oude, P. J. & R. D. Gulati, 1988. Phosphorus and nitrogen excretion rates of zooplankton from the eutrophic Loosdrecht lakes, with notes on other P sources for phytoplankton requirements. Hydrobiologia 169: 379–390.

    Article  Google Scholar 

  • Fuhs, G. W., S. D. Demmerle, E. Canelli & M. Chen, 1972. Characterization of phosphorus limited plankton algae (with reflections on the limiting nutrient concept). Am. Soc. Limnol. Oceanogr. Spec. symp. 1: 113–133.

    CAS  Google Scholar 

  • Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin) 49: 316–321.

    Article  Google Scholar 

  • Harris, G. P., 1986. Phytoplankton ecology. Structure, function and fluctuations. Chapman and Hall. 384 pp.

  • Hessen, D. O., 1989. Factors determining the nutritive status and production of zooplankton in a humic lake. J. Plankton Res. 649–664.

  • Hessen, D. O., T. Andersen & A. Lyche, 1989. Differential grazing and resource utilization of zooplankton in a humic lake. Arch. Hydrobiol. 114: 321–347.

    Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake: pool sizes and cycling trough zooplankton. Limnol. Oceanogr. 35: In press.

  • Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.

    CAS  Google Scholar 

  • Lehman, J. T. & T. Neumoski, 1985. Content and turnover rates of phosphorus in Daphnia pulex: effect of food quality. Hydrobiologia 128: 119–125.

    Article  CAS  Google Scholar 

  • McKee, M. & C. O. Knowles, 1987. Levels of protein, RNA, DNA, glycogen and lipids during growth and development of Daphnia magna Straus (Crustacea: Cladocera). Freshwat. Biol. 18: 341–351.

    Article  CAS  Google Scholar 

  • Olsen, Y. & K. Østgaard, 1985. Estimating release rates of phosphorus from zooplankton: Models and experimental verification. Limnol. Oceanogr. 30: 844–852.

    CAS  Google Scholar 

  • Olsen, Y., A. Jensen, H. Reinertsen, Y. Børsheim, M. Heldal & A. Langeland, 1986. Dependence of the rate of release of phosphorus by zooplankton upon the P: C-ratio in the food supply, as calculated by the recycling model. Limnol. Oceanogr. 31: 34–44.

    Article  Google Scholar 

  • Peters, R. H. & F. H. Rigler, 1973. Phosphorus release by Daphnia. Limnol. Oceanogr. 18: 821–839.

    CAS  Google Scholar 

  • Redfield, A. C., B. H. Ketschum & F. A. Richards, 1963. The influence of organisms on the composition of sea-water. In The Sea. M. N. Hill (ed.) Wiley Intersciences, New York. 2: 26–79.

    Google Scholar 

  • Sommer, U., 1988. Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnol. Oceanogr. 33: 1037–1054.

    Google Scholar 

  • Vadstein, O., A. Jensen, Y. Olsen & H. Reinertsen, 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr. 33: 489–503.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hessen, D.O., Andersen, T. Bacteria as a source of phosphorus for zooplankton. Hydrobiologia 206, 217–223 (1990). https://doi.org/10.1007/BF00014087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014087

Key words

Navigation