Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity

Abstract

Cohen and O'Nions1 noted that basalts from the Mid-Atlantic Ridge (MAR) display greater diversity of Pb, Nd and Sr isotopes than do basalts from the East Pacific Rise (EPR). They attributed this difference not to greater isotopic heterogeneity beneath the MAR, but rather to more effective mixing (to eradicate heterogeneity) beneath the EPR. Allègre et al.2 reached the same conclusion on the basis of isotope data including noble gas isotopic data. To test this idea further, I compare here the average spreading rate of nine portions of the mid-ocean ridge system with the measured 87Sr/86Sr diversity of basalts. This shows that the maximum observed 87Sr/86Sr diversity is inversely proportional to spreading rate. Furthermore, globally averaged eruption rates for mantle-derived rocks of intra-oceanic island arcs, ocean islands and the mid-ocean ridge system exhibit a negative correlation with 87Sr/86Sr diversity. These results suggest that the upper mantle is everywhere heterogeneous on a small scale and that the extent of observed heterogeneity is a function of mixing. Independent geophysical and petrological evidence for the existence of steady-state crustal magma chambers beneath fast-spreading ridges and their absence below slow spreading ridges favours this hypothesis because mixing is enhanced by the presence of a magma chamber. Alternatively, mixing during melt production in the mantle, during melt segregation or during ascent could also result in the observed patterns if the degree of mixing is related to eruption rate. Large heterogeneities (mantle plumes?) are required to explain why isotopic variations are well correlated geographically in some places but not in others.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, R. S. & O'Nions, R. K. J. Petrol. 23, 299–324 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Allègre, C. J., Dupre, B. & Hamelin, B. Trans. Am. geophys. Un. 64, 324 (1983).

    Google Scholar 

  3. Zindler, A., Hart, S. R., Frey, F. A. & Jakobsson, S. P. Earth planet. Sci. Lett. 45, 249–262 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Zindler, A., Staudigel, H. & Batiza, R. Earth planet. Sci. Lett. (in the press).

  5. Allègre, C. J., Brevart, O., Dupre, B. & Minster, J.-F. Phil. Trans. R. Soc. A297, 447–477 (1980).

    Article  ADS  Google Scholar 

  6. Davies, G. F. Nature 290, 208–213 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Morris, J. D. & Hart, S. R. Geochim. cosmochim. Acta 47, 2015–2030 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Batiza, R. & Vanko, D. J. geophys. Res. (in the press).

  9. Gurney, J. J. & Harte, B. Phil. Trans. R. Soc. A297, 273–293 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Frey, F. A. & Prinz, M. Earth planet. Sci. Lett. 38, 129–176 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Lonsdale, P. Mar. geophys. Res. 3, 251–293 (1977).

    Article  Google Scholar 

  12. Heirtzler, J. R., Dickson, G. O., Herron, E. M., Pitman, W. C. & LePichon, X. J. geophys. Res. 73, 2119–2136 (1968).

    Article  ADS  Google Scholar 

  13. Sclater, J. G. et al. J. geophys. Res. 81, 1857–1869 (1976).

    Article  ADS  Google Scholar 

  14. Eaby, J., Clague, D. A. & Delaney, J. R. J. geophys. Res. (in the press).

  15. Schilling, J.-G. et al. Am. J. Sci. 283, 510–586 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Dupre, B. & Allègre, C. J. Nature 286, 17–22 (1980).

    Article  ADS  CAS  Google Scholar 

  17. LeRoex, A. P. et al. J. Petrol. 24, 267–318 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Crisp, J. A. J. volcanol. Geotherm. Res. 20, 177–211 (1984).

    Article  ADS  Google Scholar 

  19. Bender, J. F., Langmuir, C. H. & Hanson, G. N. J. Petrol. 25, 213–254 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Perfit, M. R., Fornari, D. J., Malahoff, A. & Embley, R. W. J. geophys. Res. 88, 10,551–10,572 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Schilling, J.-G. & Sigurdsson, H. Nature 282, 370–375 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Macdonald, K. C. & Fox, P. J. Nature 302, 55–58 (1983).

    Article  ADS  Google Scholar 

  23. Lonsdale, P. Bull. geol. Soc. Am. (in the press).

  24. O'Hara, M. J. & Mathews, R. E. J. geol. Soc. Lond. 138, 237–277 (1981).

    Article  CAS  Google Scholar 

  25. Rosendahl, B. R. J. geophys. Res. 81, 5305–5314 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Natland, J. H. DSDP Init. Rep. Leg 54, 833–850 (1980).

    CAS  Google Scholar 

  27. Orcutt, J. et al. Nature 256, 475–476 (1975).

    Article  ADS  Google Scholar 

  28. Morel, J. M. & Hekinian, R. Contr. Miner. Petrol. 72, 425–436 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Bryan, W. B. & Moore, J. B. Bull. geol. Soc. Am. 88, 556–570 (1977).

    Article  CAS  Google Scholar 

  30. Langmuir, C. H., Bender, J. F., Bence, A. E., Hanson, G. N. & Taylor, S. R. Earth planet. Sci. Lett. 36, 133–156 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Hanks, T. C. J. geophys. Res. 76, 537–544 (1971).

    Article  ADS  Google Scholar 

  32. Turcotte, D. L. & Ahern, J. L. J. geophys. Res. 83, 767–772 (1978).

    Article  ADS  Google Scholar 

  33. Bottinga, Y. & Allègre, C. J. Phil. Trans. R. Soc. A228, 501–525 (1978).

    Article  ADS  Google Scholar 

  34. Sleep, N. H. Bull. geol. Soc. Am. 85, 1225–1232 (1974).

    Article  Google Scholar 

  35. Stolper, E., Walker, D., Hager, B. H. & Hays, J. F. J. geophys. Res. 86, 6261–6271 (1981).

    Article  ADS  CAS  Google Scholar 

  36. Spera, F. in Physics of Magmatic Processes (ed. Hargraves, R. B.) 268–324 (Princeton University Press, 1980).

    Google Scholar 

  37. Presnall, D. C., Dixon, J. R., O'Donnell, T. H. & Dixon, S. A. J. Petrol. 20, 3–35 (1979).

    Article  ADS  CAS  Google Scholar 

  38. Brace, W. F. & Kohlstedt, D. L. J. geophys. Res. 86, 6258–6252 (1980).

    Google Scholar 

  39. Feigenson, M. D. & Spera, F. J. Geology 9, 531–533 (1981).

    Article  ADS  CAS  Google Scholar 

  40. Richter, F. M. & Ribe, N. M. Earth planet. Sci. Lett. 43, 212–222 (1979).

    Article  ADS  CAS  Google Scholar 

  41. Richter, F. M., Daly, S. F. & Nataf, H.-C. Earth planet. Sci. Lett. 60, 178–194 (1982).

    Article  ADS  CAS  Google Scholar 

  42. Dupre, B. & Allègre, C. J. Nature 303, 142–146 (1983).

    Article  ADS  CAS  Google Scholar 

  43. White, W. M. & Hoffman, A. W. Nature 296, 821–825 (1982).

    Article  ADS  CAS  Google Scholar 

  44. Cohen, R. S., Evensen, N. M., Hamilton, P. J. & O'Nions, R. K. Nature 283, 149–153 (1980).

    Article  ADS  CAS  Google Scholar 

  45. Dupre, B., Lambret, B., Rousseau, D. & Allègre, C. J. Nature 294, 552–554 (1981).

    Article  ADS  CAS  Google Scholar 

  46. Verna, S. P. & Schilling, J.-G. J. geophys. Res. 87, 838–10,856 (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batiza, R. Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity. Nature 309, 440–441 (1984). https://doi.org/10.1038/309440a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309440a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing