Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oxidant for Trapping Atmospheric Radiokrypton

Abstract

RECENTLY, Stein1 presented a chemical method of removing radioactive xenon from the effluent gases of nuclear power plants and fuel reprocessing plants. His chemical oxidant, O2+SbF6−, successfully trapped xenon and radon, but not krypton. This result is reasonable if the initial reaction is electron transfer from the noble gas, Ng, to the O2+ cation. Multistep fluorine (F and F−) transfer then produces NgF+. More quantitatively, the experimental ionization potentials for Rn and Xe, 10.748 eV and 12.130 eV (ref. 2) are, respectively, less than and commensurate with that of O2, 12.07 eV (ref. 3). Accordingly, electron transfer may be expected. Because the ionization potential of Kr is2 13.999 eV, however, no reaction is expected between O2+ and Kr.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stein, L., Nature, 243, 30 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Moore, C. E., Nat. Stand. Ref. Data Ser., 34 (US National Bureau of Standards, 1970).

  3. Franklin, J. L., Dillard, J. G., Rosenstock, H. M., Herron, J. T., Draxl, K., and Field, F. H., Nat. Stand. Ref. Data Ser., 26 (US National Bureau of Standards, 1969).

  4. Stein, L., Science, 168, 362 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Stein, L., Science, 175, 1463 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Lustig, M., Pitochelli, A. T., and Ruff, J. K., J. Amer. Chem. Soc., 84, 2841 (1962).

    Article  Google Scholar 

  7. McKee, D. E., Adams, C. J., Zalkin, A., and Bartlett, N., J. Chem. Soc. Chem. Commun., 26 (1973).

  8. Huheey, J. E., J. Chem. Ed., 45, 791 (1968).

    Article  CAS  Google Scholar 

  9. Berkowitz, J., and Chupka, W. A., Chem. Phys. Lett., 7, 447 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Liu, B., and Schaeffer, III, H. F., J. Chem. Phys., 55, 2369 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Moy, D., and Young, A. R., J. Amer. Chem. Soc., 87, 1889 (1965).

    Article  CAS  Google Scholar 

  12. Qureshi, A. M., and Aubke, F., Canad. J. Chem., 48, 3117 (1970).

    Article  CAS  Google Scholar 

  13. Kosower, E. M., An Introduction to Physical Organic Chemistry, 352 (Wiley, New York, 1968).

    Google Scholar 

  14. Cotton, F. A., and Wilkinson, G., Advanced Inorganic Chemistry, third ed., 564 (Interscience, New York, 1972).

    Google Scholar 

  15. Bartlett, N., et al., Chem, Commun., 1048 (1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LIEBMAN, J. Oxidant for Trapping Atmospheric Radiokrypton. Nature 244, 84–85 (1973). https://doi.org/10.1038/244084a0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/244084a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing