Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooperative motion and hydrogen exchange stability in protein β-sheets

Abstract

Protein molecules are dynamical structures due to the continual exchange of thermal energy between them and the solvent environment1,2. This dynamic behaviour is manifest in hydrogen exchange experiments, which reflect transient solvent accessibility of groups usually buried in the protein interior3,4. However, studies of hydrogen exchange kinetics in pancreatic trypsin inhibitor (PTI) reveal a small subset of amide protons which exchange very slowly5,6. Four of these groups form successive interchain hydrogen bonds in the central region of an antiparallel β-sheet7 (Fig. 1). Here I suggest that the unusual exchange stability of these β-sheet protons reflects the structure's intrinsic flexibility. This property allows transient energy fluctuations to be accommodated as cooperative motions which do not locally strain the interchain hydrogen bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Careri, G., Fasella, P. & Gratton, E. A. Rev. Biophys. Bioengng 8, 69–97 (1979).

    Article  CAS  Google Scholar 

  2. Cooper, A. Proc. natn. Acad. Sci. U.S.A. 73, 2740–2741 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Englander, S. W., Downer, N. W. & Teitlebaum, H. A. Rev. Biochem. 41, 903–924 (1972).

    Article  CAS  Google Scholar 

  4. Richards, F. M. Carlsberg Res. Commun. 44, 47–63 (1979).

    Article  CAS  Google Scholar 

  5. Wuthrich, K. & Wagner, G. J. molec. Biol. 150, 1–18 (1979).

    Article  Google Scholar 

  6. Wagner, G. & Wuthrich, K. J. molec. Biol. 134, 75–94 (1979).

    Article  CAS  Google Scholar 

  7. Deisenhofer, J. & Steigemann, W. Acta crystallogr. B31, 238–251 (1975).

    Article  Google Scholar 

  8. Molday, R. S., Englander, S. W. & Kallen, R. G. Biochemistry 1, 150–158 (1972).

    Article  Google Scholar 

  9. Eigen, M. Angew. Chem. int. Edn. Engl. 3, 1–72 (1964).

    Article  Google Scholar 

  10. Hagler, A. & Lifson, S. in Peptides, Polypeptides and Proteins (eds Blout, E., Bovey, F., Goodman, N. & Lotan, N.) 35–48 (Wiley Interscience, New York, 1974).

    Google Scholar 

  11. Lee, B. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  12. Pauling, L. & Corey, R. Proc. natn. Acad. Sci. U.S.A. 37, 729–740 (1951).

    Article  ADS  CAS  Google Scholar 

  13. Salemme, F. R. & Weatherford, D. W. J. molec. Biol. 146, 119–121 (1981).

    Article  CAS  Google Scholar 

  14. Ramachandran, G. in Peptides, Polypeptides and Proteins (eds Blout, E., Bovey, F., Goodman, M. & Lotan, N.) 14–34 (Wiley Interscience, New York, 1974).

    Google Scholar 

  15. Raghavandra, K. & Sasisekharan, V. Int. J. Peptide Protein Res. 14, 326–338 (1979).

    Article  Google Scholar 

  16. Levy, R. M. & Karplus, M. Biopolymers 18, 2465–2495 (1979).

    Article  CAS  Google Scholar 

  17. McCammon, J. A., Gelin, B. R. & Karplus, M. Nature 277, 585–590 (1977).

    Article  ADS  Google Scholar 

  18. Levitt, M. Nature 294, 379–380 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Kossiakoff, A. A. Nature 296, 713–721 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Wlodawer, A. & Sjolin, L. Proc. natn. Acad. Sci. U.S.A. 79, 1418–1422 (1928).

    Article  ADS  Google Scholar 

  21. Peticolas, W. L. Meth. Enzym. 61, 425–456, (1979).

    Article  CAS  Google Scholar 

  22. Sturtevant, J. M. Proc. natn. Acad. Sci. U.S.A. 74, 2236–2240 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salemme, F. Cooperative motion and hydrogen exchange stability in protein β-sheets. Nature 299, 754–756 (1982). https://doi.org/10.1038/299754a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299754a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing