Skip to main content
Log in

Selective illumination of single photoreceptors in the house fly retina: local membrane turnover and uptake of extracellular horseradish peroxidase (HRP) and Lucifer Yellow

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Single photoreceptor cells in the compound eye of the housefly Musca domestica were selectively illuminated and subsequently compared electron-microscopically with the unilluminated photoreceptors in the immediate surroundings. The rhabdomeres of the illuminated cells remain largely unaffected, but the cells show an increase in the number of coated pits, various types of vesicles, and degradative organelles; some of the latter organelles are described for the first time in fly photoreceptors. Coated pits are found not only at the bases of the microvilli, but also in other parts of the plasma membrane. Degradative organelles, endoplasmic reticulum (ER) and mitochondria aggregate in the perinuclear region. The rough ER and smooth ER are more elaborate, the number of Golgi stacks, free ribosomes and polysomes is increased, and the shape and distribution of heterochromatin within the nuclei are altered. Illuminated photoreceptors also interdigitate extensively with their neighbouring secondary pigment cells. These structural changes in illuminated fly photoreceptor cells indicate an increase in membrane turnover and cellular metabolism. When applied to the eye, Lucifer Yellow spreads into the extracellular space and is taken up only by the illuminated photoreceptor cells. These cells show the same structural modifications as above. Horseradish peroxidase applied in the same way is observed in pinocytotic vesicles and degradative organelles of the illuminated cells. Hence, the light-induced uptake of extracellular compounds takes place in vivo at least partially as a result of an increase in pinocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) Molecular Biology of the Cell. Garland Publishing, New York London

    Google Scholar 

  • Beaulaton J, Lockshin RA (1982) The relation of programmed cell death to development and reproduction: comparative studies and an attempt at classification. Int Rev Cytol 79:215–235

    Google Scholar 

  • Bennett G (1984) Role of the Golgi complex in the secretory process. In: Cantin M (ed) Cell biology of the secretory process. Karger Press, Basel, pp 102–147

    Google Scholar 

  • Blest AD (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implications. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum, New York London, pp 217–245

    Google Scholar 

  • Blest AD (1988) The turnover of phototransductive membrane in compound eyes and ocelli. In: Evans PD, Wigglesworth VB (eds) Advances in insect physiology, Vol. 20. Academic Press, London New York, pp 1–53

    Google Scholar 

  • Blest AD, Powell K, Kao L (1978) Photoreceptor membrane breakdown in the spider Dionopis: GERL differentiation in the receptors. Cell Tissue Res 195:277–297

    Google Scholar 

  • Blest AD, Stowe S, DeCouet HG (1984a) Turnover of photoreceptor membranes in arthropods. Sci Prog Vis Sci 69:83–100

    Google Scholar 

  • Blest AD, DeCouet HG, Howard J, Wilcox M, Sigmund C (1984b) The extrarhabdomeral cytoskeleton in photoreceptors of Diptera. I. Labile components in the cytoplasm. Proc R Soc Lond B 220:339–352

    Google Scholar 

  • Boschek BC (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch 118:369–409

    Google Scholar 

  • Coetzee J, Merwe CF van der (1985) Effect of glutaraldehyde on the osmolarity of the buffer vehicle. J Microsc 138:99–105

    Google Scholar 

  • Cosens D (1976) The effect of short wavelength light on retinula cell structure in white-eye Drosophila. J Insect Physiol 22:497–504

    Google Scholar 

  • Cuadras J (1986) Neuron-glia communicatory structures in crustaceans. Comp Biochem Physiol 83A:9–12

    Google Scholar 

  • Eakin RM, Brandenburger JL (1982) Pinocytosis in eyes of a snail, Helix aspersa. J Ultrastruct Res 80:214–229

    Google Scholar 

  • Eakin RM, Brandenburger JL (1985) Effects of light and dark on photoreceptors in the polychaete annelid Nereis limnicola. Cell Tissue Res 242:613–622

    Google Scholar 

  • Eguchi E, Waterman TH (1976) Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes. Cell Tissue Res 169:419–434

    Google Scholar 

  • Franceschini N, Kirschfeld K (1971) Les phenomènes de pseudopupille dans l'oeil compose de Drosophila. Kybernetik 9:159–182

    Google Scholar 

  • Franke WW, Lüder MR, Kartenbeck J, Zerban H, Keenan TW (1976) Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol 69:173–195

    Google Scholar 

  • Fuge H (1967) Die Pigmentbildung im Auge von Drosophila melanogaster und ihre Beeinflussung durch den white+-Locus. Z Zellforsch 83:468–507

    Google Scholar 

  • Gardner-Medwin AR, Coles JA, Tsacopoulos M (1981) Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone. Brain Res 209:452–457

    Google Scholar 

  • Hafner GS, Hammond-Soltis G, Tokarski T (1980) Diurnal changes of lysosome-related bodies in the crayfish photoreceptor cells. Cell Tissue Res 206:319–332

    Google Scholar 

  • Holtzman E, Mercurio AM (1980) Membrane circulation in neurons and photoreceptors: some unresolved issues. Int Rev Cytol 67:1–67

    Google Scholar 

  • Johannessen JV (1978) Electron microscopy in human medicine, vol 2: Cellular pathology and storage diseases. McGraw-Hill, New York

    Google Scholar 

  • Kirschfeld K (1973) Das neurale Superpositionsauge. Fortschr Zool 21. G. Fischer, Stuttgart, pp 229–257

    Google Scholar 

  • Kirschfeld K (1983) Are photoreceptors optimal? Trends Neurosci 6:97–101

    Google Scholar 

  • Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6:13–22

    Google Scholar 

  • Krstić RV (1976) Ultrastruktur der Säugetierzelle. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Libelius R, Joseffson J-O, Lundquist I (1979) Endocytosis in chronically denervated mouse skeletal muscle. A biochemical and ultrastructural study with horseradish peroxidase. Neuroscience 4:283–292

    Google Scholar 

  • Martin RL (1983) Photoreceptor membrane degradation in the crayfish: I. Uptake of ultrastructural tracers. II. Regulation. Thesis, Indiana University

  • Matsumoto E, Hirosawa K, Takagawa K, Hotta Y (1988) Structure of retinular cells in a Drosophila melanogaster visual mutant, rdgA, at early stages of degeneration. Cell Tissue Res 252:293–300

    Google Scholar 

  • Meyer-Rochow VB, Eguchi E (1986) Do disintegrating microvilli in the eye of the crayfish Procambarus clarkii contribute to the synthesis of screening pigment granules? Z Mikrosk Anat Forsch 100:39–56

    Google Scholar 

  • Nässel DR (1983) Horseradish peroxidase and other heme proteins as neuronal markers. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York, pp 44–91

    Google Scholar 

  • Nilsson HL (1982) Rhabdom breakdown in the eye of Cirolana borealis (Crustacea) caused by exposure to daylight. Cell Tissue Res 227:633–639

    Google Scholar 

  • Nilsson HL, Lindström M (1983) Retinal damage and sensitivity loss of a light-sensitive crustacean compound eye (Cirolana borealis) — electron-microscopy and electrophysiology. J Exp Biol 107:277–292

    Google Scholar 

  • O'Shea M, Adams ME (1981) Pentapeptide (proctolin) associated with an identified neuron. Science 213:567–569

    Google Scholar 

  • Picaud S, Wunderer H, Franceschini N (1988) “Photo-degeneration” of neurones after extracellular dye application. Neurosci Lett 95:24–30

    Google Scholar 

  • Pick B (1977) Specific misalignments of rhabdomere visual axes in neural superposition eye of dipteran flies. Biol Cybern 26:215–224

    Google Scholar 

  • Piekos WB (1986) The role of reflecting pigment cells in the turnover of crayfish photoreceptors. Cell Tissue Res 244:645–654

    Google Scholar 

  • Salomon D, Carraux P, Merot Y, Saurat J-H (1987) Pathway of granule formation in Merkel cells: an ultrastructural study. J Invest Dermatol 89:362–365

    Google Scholar 

  • Schwemer J (1984) Renewal of visual pigment in photoreceptors of the blowfly. J Comp Physiol A154:535–547

    Google Scholar 

  • Schwemer J (1985) Turnover of photoreceptor membrane and visual pigment in invertebrates. In: Stieve H (ed) The molecular mechanism of photoreception. Springer, Berlin Heidelberg New York Tokyo, pp 303–326

    Google Scholar 

  • Schwemer J, Henning U (1984) Morphological correlates of visual pigment turnover in photoreceptors of the fly Calliphora erythrocephala. Cell Tissue Res 236:293–303

    Google Scholar 

  • Skalska-Rakowska JM, Baumgartner B (1984) Longitudinal continuity of the subrhabdomeric cisternae in the photoreceptors of the compound eye of the drone, Apis mellifera. Experientia 41:43–45

    Google Scholar 

  • Stark WS, Sapp R, Schilly D (1988) Rhabdomere turnover and rhodopsin cycle: maintenance of retinula cells in Drosophila melanogaster. J Neurocytol 17:499–509

    Google Scholar 

  • Stavenga DS (1985) Visual, mitochondrial, and pupillary pigments of fly photoreceptor cells. In: Gilles R, Balthazart J (eds) Neurobiology. Springer, Berlin Heidelberg New York, pp 387–397

    Google Scholar 

  • Stowe S (1982) Rhabdom synthesis in isolated eyestalks and retinae of the crab Leptograpsus variegatus. J Comp Physiol A 148:313–321

    Google Scholar 

  • Stowe S, Fukudome H, Tanaka K (1986) Membrane turnover in crab photoreceptors studied by high-resolution scanning electron microscopy and by a new technique of thick-section transmission electron microscopy. Cell Tissue Res 245:51–60

    Google Scholar 

  • Stürmer C, Bielenberg K, Spatz WB (1981) Electron microscopical identification of 3,3′, 5,5′-tetramethylbenzidine reacted horseradish peroxidase after retrograde axoplasmic transport. Neurosci Lett 23:1–5

    Google Scholar 

  • Trujillo-Cenòz O (1972) The structural organization of the compound eye in insects. In: Fuortes MGF (ed) Handbook of sensory physiology, Vol VII/2. Springer, Berlin Heidelberg New York, pp 5–62

    Google Scholar 

  • Truman JW (1984) Cell death in invertebrate nervous systems. Annu Rev Neurosci 7:171–188

    Google Scholar 

  • Walz B (1982a) Calcium-sequestering smooth endoplasmic reticulum in retinula cells of the blowfly. J Ultrastruct Res 81:240–248

    Google Scholar 

  • Walz B (1982b) Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. I. Intracellular topography as revealed by OsFeCN staining and in situ Ca accumulation. J Cell Biol 93:839–848

    Google Scholar 

  • Waterman TH (1982) Fine structure and turnover of photoreceptor membranes. In: Westfall JA (ed) Visual cells in evolution. Raven Press, New York, pp 23–41

    Google Scholar 

  • Weber KM, Schorrath-Kuschewski G (1976) Nachweis und Verteilung kohlenhydrathaltiger Verbindungen im Auge der Schmeiß-fliege Calliphora vicina. Entomologia Germanica 2:305–319

    Google Scholar 

  • White RH (1968) The effect of light and light deprivation upon ultrastructure of the larval mosquito eye III. Multivesicular bodies and protein uptake. J Exp Zool 169:261–278

    Google Scholar 

  • White RH, Michaud NA (1981) Disruption of insect photoreceptor membrane by divalent ions: dissimilar sensitivity of light- and dark-adapted rhabdomeres. Cell Tissue Res 216:403–411

    Google Scholar 

  • White RH, Sundeen CD (1967) The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye I. Polyribosomes and endoplasmic reticulum. J Exp Zool 164:461–478

    Google Scholar 

  • White RH, Gifford D, Michaud NA (1980) Turnover of photoreceptor membrane in the larval mosquito ocellus: rhabdomeric coated vesicles and organelles of the vacuolar system. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum, New York London, pp 271–296

    Google Scholar 

  • Whittle AC (1976) Reticular specializations in photoreceptors: a review. Zool Scripta 5:191–206

    Google Scholar 

  • Wilcox M, Franceschini N (1984a) Illumination induces dye incorporation in photoreceptor cells. Science 225:851–854

    Google Scholar 

  • Wilcox M, Franceschini N (1984b) Stimulated drug uptake in a photoreceptor cell. Neurosci Lett 50:187–192

    Google Scholar 

  • Williams DS (1980) Organisation of the compound eye of a tipulid fly during the day and night. Zoomorphol 95:85–104

    Google Scholar 

  • Williams DS (1982a) Photoreceptor membrane shedding and assembly can be initiated locally within an insect retina. Science 218:898–900

    Google Scholar 

  • Williams DS (1982b) Rhabdom size and photoreceptor membrane turnover in a muscoid fly. Cell Tissue Res 226:629–639

    Google Scholar 

  • Williams DS, Blest AD (1980) Extracellular shedding of photoreceptor membrane in the open rhabdom of a tipulid fly. Cell Tissue Res 205:423–438

    Google Scholar 

  • Willingham MC, Pastan I (1984) Endocytosis and exocytosis: current concepts of vesicle traffic in animal cells. Int Rev Cytol 92:51–92

    Google Scholar 

  • Wunderer H (1981) Feinstrukturelle Untersuchungen zur funktionsmorphologischen Differenzierung der Sehzellen im Auge der Schmeißfliege Calliphora erythrocephala (Diptera: Calliphoridae). Thesis Universität München

  • Wunderer H, Smola U (1982) Morphological differentiation of the central visual cells R7/8 in various regions of the blowfly eye. Tissue Cell 14:341–358

    Google Scholar 

  • Zhu H, Kirschfeld K (1984) Protection against photodestruction in fly photoreceptors by carotenoid pigments. J Comp Physiol A 154:153–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderer, H., Picaud, S. & Franceschini, N. Selective illumination of single photoreceptors in the house fly retina: local membrane turnover and uptake of extracellular horseradish peroxidase (HRP) and Lucifer Yellow. Cell Tissue Res. 257, 565–576 (1989). https://doi.org/10.1007/BF00221467

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00221467

Key words

Navigation