Skip to main content
Log in

Regional differences in a nematoceran retina (Insecta, Diptera)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The compound eye of Psychoda cinerea comprises two types of ommatidia, arranged so as to divide the retina into distinct dorsal and ventral regions. The P-type ommatidium, in the ventral part of the eye, differs fundamentally from the other dipteran ommatidia so far described, and is regarded as a primitive ommatidium. The acone dioptric apparatus is the same in both types, with a spherical lens and four Semper cells, the processes of which expand below the rhabdom to form a ring of pigment sacs. Only the distal region of the rhabdom is surrounded by a continuous ring of screening pigment, formed by 2 primary and 12–16 secondary pigment cells. The highly pigmented retinula cells penetrate the basement membrane proximally at about the level of their nuclei; in this region they are separated from the hemolymph by glial elements. The rhabdomeres R1–6 are fused to form a tube. The two types of ommatidia are defined by the arrangement of the retinula cells R7/8: in the T type the central rhabdomeres are one below the other, in the usual tandem position, whereas in the P type only R8 is central, with R7 in the peripheral ring. In the proximal region of the retina, retinula cells with parallel microvilli in neighboring ommatidia are joined in rows by lateral processes from the R8 cells. All the rhabdomeres are short and not twisted, which suggests that the retinula cells are highly sensitive to direction of polarization. The eye can adapt by a number of retinomotor processes. These findings, together with observations of behavior, imply that the psychodids have well-developed visual abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altner I, Burkhardt D (1981) Fine structure of the ommatidia and the occurrence of rhabdomeric twist in the dorsal eye of male Bibio marci (Diptera, Nematocera, Bibionidae). Cell Tissue Res 215:607–623

    Google Scholar 

  • Autrum H (1981) Light and dark adaption in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, Vol VII: Vision in invertebrates, part 6C: Springer, Berlin Heidelberg New York, pp 1–91

    Google Scholar 

  • Bernhard CG, Miller WH (1962) A corneal nipple pattern in insect compound eyes. Acta Physiol Scand 56:385–386

    Google Scholar 

  • Bernhard CG, Miller WH, Møller AR (1965) The insect corneal nipple array. Acta Physiol Scand 63:1–79

    Google Scholar 

  • Bernhard CG, Gemne G, Sällström J (1970) Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z vergl Physiol 67:1–25

    Google Scholar 

  • Blest AD, DeCouet HG (1983) Actin in cellular components of the basement membrane of the compound eye of a blowfly. Cell Tissue Res 231:325–336

    Google Scholar 

  • Brammer JD (1970) The ultrastructure of the compound eye of a mosquito Aedes aegypti L. J Exp Zool 175:181–196

    Google Scholar 

  • Burhause FM (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jahrb, Abt Allg Zool Physiol Tiere 83:502–525

    Google Scholar 

  • Clements AN (1963) The physiology of mosquitoes. Pergamon, New York

    Google Scholar 

  • Dietrich W (1909) Die Facettenaugen der Dipteren. Z Wiss Zool 92:465–539

    Google Scholar 

  • Elger M (1979) Über besondere epidermale Organe bei Schmetterlingsmücken (Psychodidae, Diptera). Thesis: Universität Hannover.

  • Feuerborn HJ (1922) Der sexuelle Reizapparat (Schmuck-, Duft- und Berührungsorgane) der Psychodiden nach biologischen und physiologischen Gesichtspunkten untersucht. Zugleich ein Beitrag zur Kenntnis und Physiologie der Sinnesorgane und der Organe des Geschlechts- und Bereitschaftsduftes. Arch Naturgesch A 88 (4):1–37

    Google Scholar 

  • Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981) Sexual dimorphism in a photoreceptor. Nature 291:241–244

    Google Scholar 

  • Gemperlein R (1969) Grundlagen zur genauen Beschreibung von Komplexaugen. Z Vergl Physiol 65:428–444

    Google Scholar 

  • Grenacher GH (1879) Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insekten und Crustaceen. Vandenhoeck und Ruprecht, Göttingen

    Google Scholar 

  • Gribakin FG (1975) Functional morphology of the compound eye of the bee. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 154–176

    Google Scholar 

  • Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia of the compound eyes of Musca and Calliphora. J Comp Physiol 154:157–165

    Google Scholar 

  • Hardie RC, Franceschini N, Ribi W, Kirschfeld K (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J Comp Physiol 145:139–152

    Google Scholar 

  • Hennig W (1973) Diptera (Zweiflügler). In: Helmcke JG, Starck D, Wermuth H (eds) Handbuch der Zoologie, Bd IV: Arthropoda 2, Insecta 2, Spezielles 31. De Gruyter, Berlin New York, pp 1–200

    Google Scholar 

  • Jung R (1956) Beiträge zur Biologie, Morphologie und Systematik der europäischen Psychodiden (Diptera). Dtsch Entomol ZNF 3:97–258

    Google Scholar 

  • Karnovsky M (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138A

    Google Scholar 

  • Kirschfeld K, Wenk P (1976) The dorsal compound eye of simuliid flies: an eye specialized for the detection of small, rapidly moving objects. Z Naturforsch 31c:764–765

    Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30

    Google Scholar 

  • Meyer-Rochow VB, Waldvogel H (1979) Visual behaviour and the structure of dark- and light-adapted larval and adult eyes of the New Zealand glowworm Arachnocampa lumionsa (Mycetophilidae: Diptera). J Insect Physiol 25:601–613

    Google Scholar 

  • Miller WH, Bernard GD, Allen JL (1968) The optics of insect compound eyes. Science 162:760–767

    Google Scholar 

  • Novikoff PM, Novikoff AB, Quintana N, Hauw JJ (1971) Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol 50:859–886

    Google Scholar 

  • Odselius R, Elofsson R (1981) The basement membrane of the insect and crustacean compound eye; definition, fine structure and comparative morphology. Cell Tissue Res 216:205–214

    Google Scholar 

  • Räber FW (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera) und einiger verwandter Formiciden-Arten. Thesis: Universität Zürich

  • Ringo DL, Brennan EF, Cota-Robles EH (1982) Epoxy resins are mutagenic: implications for electron microscopy. J Ultrastruct Res 80:280–287

    Google Scholar 

  • Schinz RH (1975) Structural specialization in the dorsal retina of the bee, Apis mellifera. Cell Tissue Res 162:23–24

    Google Scholar 

  • Schneider L, Langer H (1969) Die Struktur des Rhabdoms im “Doppelauge” des Wasserläufers Gerris lacustris. Z Zellforsch 99:528–559

    Google Scholar 

  • Schwind R (1983a) A polarization-sensitive response of the flying water bug Notonecta glauca to UV light. J Comp Physiol 150:87–91

    Google Scholar 

  • Schwind R (1983b) Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell Tissue Res 232:53–63

    Google Scholar 

  • Schwind R (1984) Evidence for true polarization vision based on a two-channel analyzer system in the eye of the water bug, Notonecta glauca. J Comp Physiol 154:53–57

    Google Scholar 

  • Shaw SR (1978) The extracellular space and blood-eye barrier in an insect retina: an ultrastructural study. Cell Tissue Res 188:35–61

    Google Scholar 

  • Seifert P, Smola U (1984) Morphological evidence for interaction between retinula cells from different ommatidia in the eye of the moth-fly Psychoda cinerea Banks (Diptera, Psychodidae). J Ultrastruct Res 86:176–185

    Google Scholar 

  • Sommer EW (1979) Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene Apis mellifera (Hymenoptera). Thesis: Universität Zürich

  • Spurr AR (1969) A low-viscosity eposy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Google Scholar 

  • Stowe S (1982) Rhabdom snnthesis in isolated eyestalks and retinae of the crab Leptograpsus variegatus. J Comp Physiol 148:313–321

    Google Scholar 

  • Trujillo-Cenóz O (1972) The structural organization of the compound eye in insects. In: Fuortes MGF (ed) Handbook of sensory physiology, Vol VII, part 2: Physiology of photoreceptor organs. Springer, Berlin Heidelberg New York, pp 5–62

    Google Scholar 

  • Trujillo-Cenóz O (1982) Morphogenesis of photoreceptor cells. In: Westfall JA (ed) Visual cells in evolution. Raven Press, New York, pp 43–56

    Google Scholar 

  • Trujillo-Cenóz O, Bernard GD (1972) Some aspects of the retinal organization of Sympycnus lineatus (Diptera, Dolichopodidae). J Ultrastruct Res 38:149–160

    Google Scholar 

  • Wada S (1974) Spezielle randzonale Ommatidien der Fliegen: Architektur und Verteilung in den Komplexaugen. Z Morph Tiere 77:87–125

    Google Scholar 

  • Walcott B (1975) Anatomical changes during light-adaptation in insect compound eyes. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 20–33

    Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, Vol. VII: Vision in invertebrates, part 6B. Springer, Berlin Heidelberg New York, pp 281–469

    Google Scholar 

  • Waterman TH, Fernandes HR, Goldsmith TH (1969) Dichroism of photosensitive pigments in rhabdoms of the crayfish Orconectes. J Gen Physiol 54:415–432

    Google Scholar 

  • Wehner R (1981) Spatial Vision in Arthropods. In: Autrum H (ed) Handbook of sensory physiology, Vol VII: Vision in invertebrates, part 6C. Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

  • Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245

    Google Scholar 

  • Wehrhahn C (1979) Sex-specific differences in the chasing behaviour of free flying houseflies (Musca). Biol Cybern 32:239–241

    Google Scholar 

  • Wellington WG (1974) Changes in mosquito flight associated with natural changes in polarized light. Can Entomol 106:941–948

    Google Scholar 

  • Wenk P (1962) Anatomie des Kopfes von Wilhelmia equina L. Weibchen (Simuliidae syn. Melusinidae, Diptera). Zool Jahrb Abt Anat Ontog Tiere 80:81–134

    Google Scholar 

  • Williams DS (1980) Organization of the compound eye of a tipulid fly during the day and night. Zoomorphol 95:85–104

    Google Scholar 

  • Winfree AT (1979) Arthropod cuticle. In: Winfree AT (ed) The geometry of biological time. Springer, Berlin Heidelberg New York, pp 361–366

    Google Scholar 

  • Wunderer H, Smola U (1982a) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialised for the detection of polarized light. Int J Insect Morphol Embryol 11:25–38

    Google Scholar 

  • Wunderer H, Smola U (1982b) Morphological differentiation of the central visual cells R7/8 in various regions of the blow-fly eye. Tissue Cell 14:341–358

    Google Scholar 

  • Zeil J (1983a) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J Comp Physiol 150:379–393

    Google Scholar 

  • Zeil J (1983b) Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera). J Comp Physiol 150:395–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, P., Wunderer, H. & Smola, U. Regional differences in a nematoceran retina (Insecta, Diptera). Zoomorphology 105, 99–107 (1985). https://doi.org/10.1007/BF00312144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312144

Keywords

Navigation