Skip to main content
Log in

Polymorphisms for asymmetric reciprocal translocations in two species of the genus Sideritis L. (Lamiaceae)

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Meiotic and karyotypic analyses of six populations of two closely related species belonging to the section Eusideritis of the genus Sideritis (five of S. saetabensis and one of S. tragoriganum) (Lamiaceae), revealed polymorphisms for asymmetric reciprocal translocations. Two populations of S. saetabensis (S-046 and S-089) and the population of S. tragoriganum (S-056) contained heterozygotes and standard homozygotes. No homozygotes for the rearrangement (dicentric) were found. The meiotic behavior of the heterozygotes showed great stability of the dicentric chromosomes in both species due to strict control of meiosis at three levels: (1) chiasma formation, (2) multivalent coorientation at metaphase I, (3) dicentric chromatid separation at anaphase II. During mitosis there may also be strict control of dicentric chromatid separation through 100% parallel separation without interlocking. This stable polymorphism for asymmetric reciprocal translocations is a unique phenomenon that seems to be maintained by over-dominance, thus being a special case of linkage disequilibrium. We give two alternative hypotheses to explain the origin of these polymorphisms and discuss their evolutionary significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise JC (1976) Genetic differentiation during speciation. In: FJ Ayala (ed) Molecular evolution. Mass: Sinauer Ass, Sunderland, pp 106–122

    Google Scholar 

  • Bentzer B, Bothmer R, Engstrand L, Gustafsson M, Snogerup S (1971) Some sources of error in the determination of arm ratios of chromosomes. Bot Notiser 124:65–74

    Google Scholar 

  • Coates DJ (1979) Karyotype analysis in Stylidium crossocephalum (Angiospermae: Stylidiaceae). Chromosoma 72:347–356

    Google Scholar 

  • Daniel A, Lam-Po-Tang PRLC (1976) Structure and inheritance of some heterozygous Robertsonian translocations in man. J Med Genet 13:381–388

    Google Scholar 

  • Darlington CD (1965) Cytology. Part I: Recent advances in cytology, 1937. Part II: Recent advances in cytology, 1937–1964. J and A Churchill Ltd, London

    Google Scholar 

  • Essad S, Arnoux J, Maia N (1966) Contrôle de validité des caryogrammes. Aplication au caryotype de Lolium perenne L. Chromosoma 20:202–220

    Google Scholar 

  • Fernández-Peralta AMa (1981) Estudios citogenéticos y evolutivos en el género Sideritis L. (Lamiaceae). Tesis Doctoral. División de Biología. Facultad de Ciencias. Universidad Autónoma. Madrid, Spain

    Google Scholar 

  • González-Aguilera JJ, Fernández-Peralta, AMa (1981) Karyology and evolution in Sesamoides (Resedaceae). Plant Syst Evol 139:147–154

    Google Scholar 

  • González-Aguilera JJ, Fernández-Peralta AMa, Sañudo A (1980a) Cytogenetic and evolutionary studies on the Spanish species of the family Resedaceae L: Sections Phyteuma L and Resedastrum Duby. Bol Soc Brot Sér 2, 23:519–536

    Google Scholar 

  • González-Aguilera JJ, Fernández-Peralta AMa, Sañudo A (1980b) Estudios citogenéticos y evolutivos en especies españolas de la familia Resedaceae L: Sectión Glaucoreseda DC, Anales Jard Bot Madrid 36:311–320

    Google Scholar 

  • Hair JB (1954) The origin of new chromosomes in Agropyron. Heredity 6:215–233

    Google Scholar 

  • Hatch FT, Bodner AJ, Mazrimas JA, Moore II DH (1976) Satellite DNA and cytogenetic evolution: DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (genus Dipodomys). Chromosoma 58:155–168

    Google Scholar 

  • Holmquist G, Dancis B (1980) A general model of karyotype evolution. Genetica 52/53:151–163

    Google Scholar 

  • Hsu TC, Pathak S, Chen TR (1975) The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations. Cytogenet Cell Genet 15:41–49

    Google Scholar 

  • John B, Lewis KR (1965) The meiotic system. Protoplasmatologia Band VI, F1. Springer, Wien, New York

    Google Scholar 

  • Lewis H (1953) The mechanism of evolution in the genus Clarkia. Evolution 7:1–20

    Google Scholar 

  • Lewis H (1962) Catastrophic selection as a factor in speciation. Evolution 16:257–271

    Google Scholar 

  • Lewis H (1966) Speciation in flowering plants. Science 152:167–172

    Google Scholar 

  • Mayr E (1976) Populations, species and evolution. Harvard University Press, Cambridge Mass, London

    Google Scholar 

  • Morrison JW (1954) A dicentric wheat chromosome in division. Can J Bot 32:491–502

    Google Scholar 

  • Nagl W (1978) Endopolyploidy and polyteny in differentiation and evolution. North-Holland Publ Comp, Amsterdam New York Oxford

    Google Scholar 

  • Nakagome Y, Teramura F, Kataoka K, Hosono F (1976) Mental retardation, malformation syndrome and partial 7p monosomy (45,XX, t dic(7; 15)(p21; p11)). Clin Genet 9:621–624

    Google Scholar 

  • Neibuhr E (1972a) Unusual findings by fluorescent microscopy of a t(13q, 14q). Humangenetik 15; 90–92

    Google Scholar 

  • Neibuhr E (1972b) Dicentric and monocentric Robertsonian translocations in man. Humangenetik 16:217–226

    Google Scholar 

  • Sañudo A (1971) Variabilidad cromosómica de las Genisteas de la Flora Española en relación con su ecología. Cuad Biol 1:5–21

    Google Scholar 

  • Schmidtke J, Brennecke H, Schmid M, Neitzel H, Sperling K (1981) Evolution of Muntjac DNA. Chromosoma 84:187–193

    Google Scholar 

  • Sears ER, Camara CA (1952) A transmissible dicentric chromosome. Genetics 37:125–135

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. WH Freeman and Company, San Francisco

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold (Publishers) Ltd, London

    Google Scholar 

  • Steinitz-Sears LM, Sears ER (1953) Chiasmata and crossing over in a dicentric chromosome in wheat. Genetics 38:244–250

    Google Scholar 

  • Sybenga J (1959) Some sources of error in the determination of chromosome length. Chromosoma 10:355–364

    Google Scholar 

  • Sybenga J (1975) Meiotic configurations. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • White MJD (1969) Chromosomal rearrangements and speciation in animals. Ann Rev Genet 3:75–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Peralta, A.M., González-Aguilera, J.J. & Sañudo, A. Polymorphisms for asymmetric reciprocal translocations in two species of the genus Sideritis L. (Lamiaceae). Chromosoma 88, 83–89 (1983). https://doi.org/10.1007/BF00329506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329506

Keywords

Navigation