Skip to main content
Log in

Orthogonal stagnation flow, a framework for steady extensional flow experiments

  • Original Contributions · Originalarbeiten
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

A new framework for viewing steady extensional flow is presented: Steady orthogonal stagnation flow is an ideal which one should strive to reach in an actual experiment. The kinematics and the stress boundary conditions are developed for stagnation flow in general and in two special cases: the impingement of two circular streams and of two planar sheets. Contemplating this ideal clarifies the advantages and disadvantages of current experiments, thereby pointing the way towards new experiments; a number are suggested. Axisymmetric (with\(\dot \varepsilon _x \) > 0) and planar stagnation flow within a lubricated die look particularly promising. Some preliminary experimental results are given for uniaxial extension of a polyacrylamide solution in a water lubricated die.

Zusammenfassung

Es werden neue Leitlinien zur Beurteilung von stationären Dehnströmungs-Experimenten vorgeschlagen: Die stationäre orthogonale Staupunktströmung wird als ein Ideal herausgestellt, das man in Experimenten zu erreichen versuchen sollte. Die Kinematik und die Randbedingung für das Spannungsfeld werden für allgemeine Staupunktströmungen hergeleitet und auf zwei Sonderfälle angewendet: die axialsymmetrische und die ebene Staupunktströmung. Der Vergleich dieser idealen Strömung mit wirklichen Experimenten verdeutlicht deren jeweilige Vor- und Nachteile und weist so auf neue Experimente hin. Mehrere neue Experimente werden vorgeschlagen. Die axialsymmetrisch nach außen gerichtete und die ebene Staupunktströmung in Düsen mit geschmierten Wandungen erscheinen besonders erfolgversprechend. Einige vorläufige experimentelle Ergebnisse für die einachsige Dehnströmung einer Polyacrylamidlösung in einer mit Wasser geschmierten Düse werden vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a —:

ratio of extension rates\({{\dot \varepsilon _z } \mathord{\left/ {\vphantom {{\dot \varepsilon _z } {\dot \varepsilon _y }}} \right. \kern-\nulldelimiterspace} {\dot \varepsilon _y }}\)

A m 2 :

cross-sectional area of fluid stream

F N:

force on cross-section of stream

g m/s2 :

gravitational acceleration

h m:

thickness of planar stream, figure 3

l m:

length of planar stream, figure 3

n —:

normal vector to stream surface

p Pa:

pressure, eqs. [19], [20]

r m:

coordinate

R m:

radius of prescribed circular cross-section at positionx = ±x 0, eq. [5]

Δt s:

residence time, eq. [10]

t —:

tangential vector on stream surface, eqs. [25], [26]

T Pa:

stress tensor

v m/s:

velocity

\(\dot V\) m3/s:

volume flow rate

x,y,z m:

principal coordinates

\(\dot \gamma \) s−1 :

rate of strain tensor, eq. [3]

\(\dot \varepsilon _i \) s−1 :

principal rate of extension

η Pa s:

shear viscosity

τ Pa:

extra stress tensor

n :

normal to stream surface

t :

tangential to stream surface

0:

reference position in flow field, eq. [4]

x, y, z :

direction of coordinates

References

  1. Brenner, H., Int. J. Multiphase Flow1, 195 (1974).

    Google Scholar 

  2. Bird, R. B., O. Hassager, R. C. Armstrong, C. F. Curtiss, Dynamics of Polymeric Liquids: Vol. II, Kinetic Theory, p. 637, Wiley (1977).

  3. Dealy, J. M., J. Non-Newtonian Fluid Mech.4, 9 (1978).

    Google Scholar 

  4. Münstedt, H., Rheol. Acta14, 1077 (1975).

    Google Scholar 

  5. Laun, H. M., H. Münstedt, Rheol. Acta15, 517 (1976).

    Google Scholar 

  6. Münstedt, H., A new universal extensional rheometer for polymer melts, presented at Soc. Rheol., Houston, Oct. 1978.

  7. Weinberger, C. B., J. D. Goddard, Int. J. Multiphase Flow1, 465 (1974).

    Google Scholar 

  8. Baid, K., A. B. Metzner, Trans. Soc. Rheol.21, 237 (1977).

    Google Scholar 

  9. Kanel, F. A., Ph. D. Thesis, University of Delaware (1972).

  10. Balmer, R. T., D. J. Hochschild, J. Rheol.22, 165 (1978).

    Google Scholar 

  11. Street, J. R., Trans. Soc. Rheol.12, 103 (1968).

    Google Scholar 

  12. Pearson, G., S. Middleman, Amer. Ind. Chem. Engg. J.23, 714 (1977).

    Google Scholar 

  13. Metzner, A. B., A. P. Metzner, Rheol. Acta9, 174 (1970).

    Google Scholar 

  14. Cogswell, F. N., Polymer Eng. Sci.12, 64 (1972).

    Google Scholar 

  15. Hsu, J. C., R. W. Flummerfelt, Trans. Soc. Rheol.19, 523 (1975).

    Google Scholar 

  16. Walters, K., Rheometry, p. 221, Halsted Press (London 1975).

    Google Scholar 

  17. Giesekus, H., Rheol. Acta2, 101 (1962).

    Google Scholar 

  18. Giesekus, H., Rheol. Acta2, 112 (1962).

    Google Scholar 

  19. Schlichting, H., Boundary Layer Theory, 6th ed., p. 91, McGraw-Hill (1968).

  20. Batchelor, G. K., An Introduction to Fluid Mechanics Ch. 2.7 (Cambridge Univ. Press, 1967).

  21. Frank, F. C., A. Keller, M. R. Mackley, Polymer12, 467 (1971).

    Google Scholar 

  22. Mackley, M. R., A. Keller, Phil. Trans. Roy. Soc. London278 A, 1276, 29 (1975).

    Google Scholar 

  23. Taylor, G. I., Proc. Roy. Soc.A 146, 501 (1934).

    Google Scholar 

  24. Mackley, M. R., J. Non-Newtonian Fluid Mech.4, 111 (1978).

    Google Scholar 

  25. Chauffoureaux, J. C., paper presented at Amer. Ind. Chem. Engg. meeting, New York, November 1977.

  26. Snelling, G. R., J. F. Lontz, J. Appl. Polym. Sci.3, 257 (1960).

    Google Scholar 

  27. Shaw, M. T., J. Appl. Polym. Sci.19, 2811 (1975).

    Google Scholar 

  28. Everage, A. E., R. L. Ballman, Nature273, 213 (1978).

    Google Scholar 

  29. Macosko, C. W., B. B. Wilson, H. H. Winter, Extensional flow experiments with a lubricated die presented at Chem. Eng. Rheol. (Aachen, March 1979).

  30. Schraub, F. A., S. J. Kline, J. Henry, P. W. Runstadler, A. Littell, Trans. ASME, J. Basic Eng.87, 429 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, H.H., Macosko, C.W. & Bennett, K.E. Orthogonal stagnation flow, a framework for steady extensional flow experiments. Rheol Acta 18, 323–334 (1979). https://doi.org/10.1007/BF01515825

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515825

Keywords

Navigation