Skip to main content
Log in

The course control system of beetles walking in an air-current field

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The wind-orientated walk of carrion beetles Necrophorus humator F. was analysed under closed-loop conditions with a walking compensator and under openloop conditions with a paired tread wheel (Fig. 1).

  1. 1.

    On the walking compensator an animal runs stable courses with a preferred direction relative to an air current (velocity =; 100 cm/s, Fig. 2B-D). A change in the air-current direction causes a corresponding adjustment of the mean walking direction (Fig. 3). Such course adjustment works best for changes in the air-current direction by an absolute value of 90° (Table 2).

  2. 2.

    Under closed-loop conditions the animal shows deviations of less than ± 45° around its preferred direction relative to the wind (Fig. 2B-D). The characteristic curve which describes the animal's angular velocity as a function of the animal's walking direction relative to the air-current stimulus is therefore revealed only in this angular range (Fig. 3, top).

  3. 3.

    Under open-loop conditions, however, complete characteristic curves can be obtained because the animal's walking reaction in response to any given angle of air-current stimulus is measurable on the paired tread wheel (Fig. 4). The characteristic curves are approximately sinusoidal functions. They can either show a shift parallel to the ordinale by a superimposed direction-independent constant angular velocity alone or, at the same time, they can independently exhibit an angular shift along the abscissa (Fig. 5).

  4. 4.

    The walking tracks straighten with increasing air-current velocity (Fig. 6A, insets), i.e. the animal more rapidly compensates deviations from a preferred course. This corresponds to higher amplitudes of the characterisic curve and steeper slopes at the negative zero-crossing point under open- as well as under closed-loop conditions (Fig. 6).

  5. 5.

    Walking in an air-current field can be explained by a model of the course control system using a feedback loop (Fig. 7). This model operates according to a sinusoidal characteristic function on which is superimposed a Gaussian white noise process of angular velocity which is independent of walking direction. The model produces realistic walking tracks in an air-current field (Fig. 8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London New York Toronto Sydney San Francisco

    Google Scholar 

  • Bell JW, Kramer E (1979) Search and anemotactic orientation of cockroaches. J Insect Phyiol 25:631–640

    Google Scholar 

  • Birukow G (1958) Zur Funktion der Antennen beim Mistkäfer (Geotrupes silvaticus). Z Tierpsychol 15:265–276

    Google Scholar 

  • Böhm H, Scharstein H (1988) Perception and processing of air current information in the course control system of walking beetle. In: Elsner N, Barth FG (eds) Sense organs; interfaces between environment and behaviour. Thieme, Stuttgart New York, p 90

    Google Scholar 

  • Böhm H, Schildberger k, Huber F (1991) Visual and acoustic course control in the cricket Gryllus bimaculatus. J Exp Biol 159:235–248

    Google Scholar 

  • Böhm H, Wendler G (1987) Die Windorientierung von Aaskäfern. Mitt Dtsch Ges Allg Angew Entomol 6:91–94

    Google Scholar 

  • Borst A, Heisenberg M (1982) Osmotropotaxis in Drosophila melanogaster. J Comp Physiol 147:479–484

    Google Scholar 

  • Butenandt E (1968) Wirkungstheoretische Analyse der Menotaxis bei Calliphora. In: Drischl N, Tiedt (eds) Biokybernetik. Bd II. Karl-Marx-Universität, Leipzig, pp 58–63

    Google Scholar 

  • Edrich W (1977) Interaction of light and gravity in the orientation of the waggle dance of honey bees. Animal Behav 25:342–363

    Google Scholar 

  • Gewecke M (1972) Antennen und Stirnscheitelhaare von Locusta migratoria L. als Luftströmungs-Sinnesorgane bei der Flugsteuerung. J Comp Physiol 80:57–94

    Google Scholar 

  • Gewecke M (1975) The influence of air-current sense organs on the flight behaviour of Locusta migratoria L. J Comp Physiol 103:79–95

    Google Scholar 

  • Götz KG (1980) Visual guidance in Drosophila. In: Siddiqi O, Babu P, Hall LM (eds) Development and neurobiology of Drosophila. Plenum Press, New York, pp 391–407

    Google Scholar 

  • Graham D (1981) Walking kinetics of the stick insect using a low inertia counter-balanced, pair of independent treadwheels. Biol Cybern 40:49–57

    Google Scholar 

  • Hassenstein B (1951) Ommatidienraster und afferente Bewegungsintegration (Versuche am Rüsselkäfer Chlorophanus viridis). Z Vergl Physiol 33:301–326

    Google Scholar 

  • Heinzel HG (1982) Rezeption von Luftströmungen und ihre Bedeutung für den Flug der Wanderheuschrecke. In: Nachtigall W (ed) Insect flight. BIONA-report 2, Akad Wiss Mainz; G Fischer, Stuttgart New York, pp 53–69

    Google Scholar 

  • Heinzel H-G, Böhm H (1983) Die Windorientierung laufender Käfer (Necrophorus humator F.). Verh Dtsch Zool Ges 76:287

    Google Scholar 

  • Heinzel H-G, Böhm H (1989) The wind-orientation of walking carrion beetles. J Comp Physiol A 164:775–786

    Google Scholar 

  • Heinzel H-G, Gewecke M (1979) Directional sensitivity of the antennal campaniform sensilla in locusts. Naturwissenschaften 66:212

    Google Scholar 

  • Heisenberg M (1983) Initiale Aktivität und Willkürverhalten bei Tieren. Naturwissenschaften 70:70–78

    Google Scholar 

  • Heran H (1962) Anemotaxis und Fluchtreaktion des Bachläufers Velia caprai. Z Vergl Physiol 46:129–149

    Google Scholar 

  • Jander R (1957) Die optische Richtungsorientierung der Roten Waldameise (Formica rufa L.). Z Vergl Physiol 40:162–238

    Google Scholar 

  • Jander R (1959) Spontaneous changes in the angular orientation of animals. Abstr Anat Record 134:587

    Google Scholar 

  • Jander R (1963) Insect orientation. Annu Rev Entomol:95–114

  • Jander R (1970) Ein Ansatz zur modernen Elementarbeschreibung der Orientierungshandlung. Z Tierpsychol 27:771–778

    Google Scholar 

  • Kramer E (1975) Orientation of the male silk moth to sex attractant bombykol. In: Denton DA, Coglan JD (eds) Olfaction and taste 5. Academic Press, New York, pp 329–335

    Google Scholar 

  • Kramer (1976) The orientation of walking honey bees in odour field with small concentration gradients. Physiol Entomol 1:27–37

    Google Scholar 

  • Linsenmair KE (1969) Anemotaktische Orientierung bei Tenebrioniden und Mistkäfern (Insecta, Coleoptera). Z Vergl Physiol 64:154–211

    Google Scholar 

  • Linsenmair KE (1970) Die Interaktion der paarigen antennalen Sinnesorgane bei der Windorientiemng laufender Mist und Schwarzkäfer (Insecta, Coleoptera). Z Vergl Physiol 70:247–277

    Google Scholar 

  • Linsenmair KE (1973) Die Windorientierung laufender Insekten. Fortschr Zool 21:59–79

    Google Scholar 

  • Lönnendonker U (1984) Der Beitrag von Fixation und Optomotorik an der Orientierung laufender Kartoffelkäfer. Doct Thesis, Universität Köln, Germany

    Google Scholar 

  • Mittelstaedt H (1951) Zur Analyse physiologischer Regelkreise. Verh Dtsch Zool Ges 1951:150–157

    Google Scholar 

  • Mittelstaedt H (1963) Bikomponenten-Theorie der Orientierung. Ergeb Biol 26:253–258

    Google Scholar 

  • Müller JK, Cordes R (1987) Vergleich der tageszeitlichen Aktivitätsverteilung der Aaskäfer Necrophorus humator und N. vespilloides (Coleoptera). Verh Dtsch Zool Ges 80:321

    Google Scholar 

  • Poggio T, Reichardt W (1976) Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Q Rev Biophysics 9:377–3438

    Google Scholar 

  • Preiss R (1980) Anemo taxis im Lauf und Flug beim Schwammspinner: Versuche zur Aufklärung des Wirkungsgefüges. Doct Thesis, Universität München, Germany

    Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophysics 9:311–375

    Google Scholar 

  • Scharstein H (1975) Der Mechanismus der Sollwertverstellung bei der Kursregelung der roten Waldameise (Formica polyctena). Doct Thesis, Universität München, Germany

    Google Scholar 

  • Scharstein H (1977) Wie steuern Insekten ihr Laufverhalten im Dunkeln? In: Hauske G, Butenandt E (eds) Kybernetik. R Oldenbourg, München Wien, pp 384–387

    Google Scholar 

  • Schildberger K, Kleindienst HU (1989) Sound localization in intact and one-eared crickets. J Comp Physiol A 165:615–626

    Google Scholar 

  • Schmitz B (1983) Analyse der akustischen Orientierung bei Grillenweibchen Gryllus campestris. Doct Thesis, Universität Köln, Germany

    Google Scholar 

  • Schoenemann B (1984) Das Gegenwendeverhalten und seine Steuerung. Eine Analyse bei Landasseln (Oniscus asellus). Doct Thesis, Universität Köln, Germany

    Google Scholar 

  • Schöne H (1962) Optisch gesteuerte Lageänderung. (Versuche an Dytiscidenlarven zur Vertikalorientierung). Z Vergl Physiol 45:590–604

    Google Scholar 

  • Schöne H (1973) Raumorientierung, Begriffe und Mechanismen. Fortschr Zool 21:1–19

    Google Scholar 

  • Schöne H (1984) Spatial orientation. The spatial control of behavior in animals and man. Princeton University Press, Princeton New York

    Google Scholar 

  • Stabel J (1987) Der Mechanismus der Richtungsbestimmung und seine Beziehung zur Gesangserkennung bei der Phonotaxis der Grille (Gryllus bimaculatus De Geer). Doct. Thesis, Universität Köln, Germany

    Google Scholar 

  • Stabel J, Wendler G, Scharstein H (1985) The escape reaction of Acheta domesticus under open loop conditions. In: Gewecke M, Wendler G (eds) Insect locomotion. Paul Parey, Berlin Hamburg, pp 79–85

    Google Scholar 

  • Stabel J, Wendler G, Scharstein H (1989) Cricket phonotaxis: Localization depends on recognition of the calling song pattern. J Comp Physiol A 165:165–177

    Google Scholar 

  • Wendler G (1975) Physiology and system analysis of the gravity orientation in two insect species (Carausius morosus, Calandra granaria). Fortschr Zool 23:33–46

    Google Scholar 

  • Wendler G, Scharstein H (1986) The orientation of grain weevils (Sitophilus granarius): Influence of spontaneous turning tendencies and gravitational stimuli. J Comp Physiol A 159:337–389

    Google Scholar 

  • Wendler G, Heinzel H-G, Scharstein H (1984) Paired tread wheels as a tool for analysis of orientation behaviour in arthropods. In:Varjú D, Schnitzler HU (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York, pp 179–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, H., Heinzel, HG., Scharstein, H. et al. The course control system of beetles walking in an air-current field. J Comp Physiol A 169, 671–683 (1991). https://doi.org/10.1007/BF00194896

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194896

Key words

Navigation