Skip to main content
Log in

Solute Washout Experiments for Characterizing Mass Transport in Hollow Fiber Immunoisolation Membranes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The transport characteristics of immunoisolation membranes can have a critical effect on the design of hybrid artificial organs and cell therapies. However, it has been difficult to quantitatively evaluate the desired transport properties of different hollow fiber membranes due to bulk mass transfer limitations in the fiber lumen and annular space. An attractive alternative to existing methodologies is to use the rate of solute removal or “washout” from the annular space during constant flow perfusion through the fiber lumen. Experimental washout curves were obtained for glucose and a 10 kD dextran in two different hollow fiber devices. Data were analyzed using a theoretical model which accounts for convective and diffusive transport in the lumen, membrane, and annular space. The model was in good agreement with the experimental results and provided an accurate measure of the effective membrane diffusion coefficient for both small and large solutes. This approach should prove useful in theoretical analyses of solute transport and performance of hollow fiber artificial organs. © 1998 Biomedical Engineering Society.

PAC98: 8722Fy, 8790+y

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aebischer, P., E. Buchser, J. Joseph, J. Favre, N. de Tribolet, M. Lysaght, S. Rudnick, and M. Goddard. Transplantation in humans of encapsulated xenogeneic cells without immunosuppression: A preliminary report. Transplantation58:1275- 1277, 1994.

    Google Scholar 

  2. Brotherton, J. D., and P. C. Chau. Modeling of axial-flow hollow fiber cell culture bioreactors. Biotechnol. Prog.12:575-590, 1996.

    Google Scholar 

  3. Catapano, G. Mass transfer limitations to the performance of membrane bioartificial liver support devices. Int. J. Artif. Organs19:18-35, 1996.

    Google Scholar 

  4. Chick, W. L., A. A. Like, and V. Lauris. Beta cell culture on synthetic capillaries: An artificial endocrine pancreas. Science187:847-849, 1975.

    Google Scholar 

  5. Colton, C. K., and E. S. Avgoustiniatos. Bioengineering in development of the hybrid artificial pancreas. J. Biomech. Eng.113:152-170, 1991.

    Google Scholar 

  6. Colton, C. K., and E. G. Lowrie. Hemodialysis: Physical principles and technical considerations. In: The Kidney, edited by B. M. Brenner and F. C. Rector. Philadelphia: Saunders, 1981, pp. 2425-2489.

    Google Scholar 

  7. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE. J.33:1409-1425, 1987.

    Google Scholar 

  8. Dionne, K. E., B. M. Cain, R. H. Li, E. J. Doherty, M. J. Lysaght, D. H. Rein, and F. T. Gentile. Transport characterization of membranes for immunoisolation. Biomaterials17:257-271, 1996.

    Google Scholar 

  9. Giorgio, T. D., A. D. Moscioni, J. Rozga, and A. A. Demetriou. Mass transfer in a hollow fiber device used as a bioartificial liver. ASAIO J.39:886-892, 1993.

    Google Scholar 

  10. Granath, K. A. Solution properties of branched dextrans. J. Colloid Sci.13:308-322, 1958.

    Google Scholar 

  11. Jesser, C., L. Kessler, A. Lambert, A. Belcourt, and M. Pinget. Pancreatic islet macroencapsulation: A new device for the evaluation of artificial membrane. Artif. Organs20:997- 1007, 1996.

    Google Scholar 

  12. Kelsey, L. J. Fluid flow and mass transfer in hollow fiber membrane devices. Ph.D. Thesis, University of Delaware, Newark, DE, 1992.

    Google Scholar 

  13. Kelsey, L. J., M. R. Pillarella, and A. L. Zydney. Theoretical analysis of convective flow profiles in a hollow-fiber membrane bioreactor. Chem. Eng. Sci.45:3211-3220, 1990.

    Google Scholar 

  14. Kessler, L., M. Pinget, M. Aprahamian, D. Poinsot, M. Keipes, and C. Damgé. Diffusion properties of an artificial membrane used for Langerhans islets encapsulation: Interest of an in vitrotest. Transplant. Proc.24:953-954, 1992.

    Google Scholar 

  15. Knazek, R. A., P. M. Gullino, P. O. Kohler, and R. L. Dedrick. Cell culture on artificial capillaries: An approach to tissue growth in vitro. Science178:65-67, 1972.

    Google Scholar 

  16. Langsdorf, L. J., and A. L. Zydney. Diffusive and convective solute transport through hemodialysis membranes: A hydrodynamic analysis. J. Biomed. Mater. Res.28:573-582, 1994.

    Google Scholar 

  17. Mochizuki, S., and A. L. Zydney. Dextran transport through asymmetric ultrafiltration membranes: Comparison with hydrodynamic models. J. Membrane Sci.68:21-41, 1992.

    Google Scholar 

  18. Pillarella, M. R., and A. L. Zydney. Theoretical analysis of the effect of convective flow on solute transport and insulin release in a hollow-fiber bioartificial pancreas. J. Biomech. Eng.112:220-228, 1990.

    Google Scholar 

  19. Ramírez, C. A., M. López, and C. L. Stephens. In vitroperfusion of hybrid artificial pancreas devices at low flow rates. ASAIO J.38:M443-M449, 1992.

    Google Scholar 

  20. Scharp, D. W., C. J. Swanson, B. J. Olack, P. P. Latta, O. D. Hegre, E. J. Doherty, F. T. Gentile, K. S. Flavin, M. F. Ansara, and P. E. Lacy. Protection of encapsulated human islets implanted without immunosuppression in patients with Type I or Type II diabetes and in nondiabetic control subjects. Diabetes43:1167-1170, 1994.

    Google Scholar 

  21. Sullivan, S. J., T. Maki, K. M. Borland, M. D. Mahoney, B. A. Solomon, T. E. Muller, A. P. Monaco, and W. L. Chick. Biohybrid artificial pancreas: Long-term implantation studies in diabetic, pancreatectomized dogs. Science252:718-721, 1991.

    Google Scholar 

  22. Ward, R. S., K. A. White, C. A. Wolcott, A. Y. Wang, R. W. Kuhn, J. E. Taylor, and J. K. John. Development of a hybrid artificial pancreas with a dense polyurethane membrane. ASAIO J.39:M261-M267, 1993.

    Google Scholar 

  23. Zekorn, T., U. Siebers, L. Filip, K. Mauer, U. Schmitt, R. G. Bretzel, and K. Federlin. Bioartificial pancreas: The use of different hollow fibers as a diffusion chamber. Transplant. Proc.21:2748-2750, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, R.F., López, M., Stephens, C.L. et al. Solute Washout Experiments for Characterizing Mass Transport in Hollow Fiber Immunoisolation Membranes. Annals of Biomedical Engineering 26, 618–626 (1998). https://doi.org/10.1114/1.102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.102

Navigation