Skip to main content
Log in

Stable isotopes and sediments from Pickerel Lake, South Dakota, USA: a 12ky record of environmental changes

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age.

Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air from the Gulf of Mexico. More frequent switching between periods of zonal and meridional circulation seem to be responsible for increased climatic variability during the last 2.2 ka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absolon, A., 1973. Ostracoden aus einigen Profilen späat-und post-glazialer Karbonatablagerungen in Mitteleuropa. Mitt. Bayer. Paläaont. Hist. Geol. 13: 47–94.

    Google Scholar 

  • Amundson, R., O. Chadwick, C. Kendall, Y. Wang & M. DeNiro, 1996. Isotopic evidence for shifts in atmospheric circulation patterns during the late Quaternary in mid North America. Geology 24: 23–26.

    Google Scholar 

  • Bartlein, P. J. & C. Whitlock, 1993. Paleoclimate interpretation of the Elk Lake pollen record. In Bradbury, J. P. & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Boulder, Colorado, Geol. Soc. Am. Special Paper 276: 275–293.

  • Bartlein, P. J., T. Web III & E. Fleri, 1984. Holocene climatic change in the northernMidwest: pollenderived estimates. Quat. Res. 22: 361–374.

    Google Scholar 

  • Bradbury, J. P., W. E. Dean & R. Y. Anderson, 1993. Holocene climatic and limnologic history of the north-central United States as recorded in the varved sediments of Elk Lake, Minnesota: A synthesis, In Bradbury, J. P. & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Boulder, Colorado, Geol. Soc. Am. Special Paper 276: 309–328.

  • Bryson, R. A., 1966. Air masses, streamlines, and the boreal forest. Geograph. Bull. 8: 228–269.

    Google Scholar 

  • Bryson, R. A. & F. K. Hare, 1974. Climates of North America. In Landsberg, H. E. (ed.), World survey of climatology 11. New York, Elsevier, 420 pp.

    Google Scholar 

  • Cerling, T. E. & J. Quade, 1993. Stable carbon and oxygen isotopes in soil carbonates. In Swart, P. K., K. C. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records, Geophys. Monogr. 78: 217–231.

  • Colman, S. M., R. M. Forester, R. L. Reynolds, D. S. Sweetkind, J. W. King, P. Gangemi, G. A. Jones, L. D. Keigwin & D. S. Foster, 1994. Lake-level history of Lake Michigan for the past 12 000 years: The record from deep lacustrine sediments. J. Great Lakes Res. 20: 73–92.

    Google Scholar 

  • Dean, W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. J. Sed. Res. 44: 242–248.

    Google Scholar 

  • Dean, W. E., 1997. Rates, timing, and cyclicity of Holocene eolian activity in north-central United States: Evidence from varved lake sediments. Geology 25: 331–334.

    Google Scholar 

  • Dean, W. E. & E. Gorham, 1976. Major chemical and mineral components of profundal surface sediments in Minnesota lakes. Limnol. Oceanogr. 21: 259–284.

    Google Scholar 

  • Dean, W. E. & R. O. Megard, 1993. Environment of deposition of CaCO3 in Elk Lake, Minnesota. In Bradbury, J. P. & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Boulder, Colorado, Geol. Soc. Am. Special Paper 276: 97–113.

  • Dean, W. E. & M. Stuiver, 1993. Stable carbon and oxygen isotope studies of the sediments of Elk Lake, Minnesota. In Bradbury, J. P. & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Boulder, Colorado, Geol. Soc. Am. Special Paper 276: 163–180.

  • Dean, W. E., E. Gorham & D. J. Swaine, 1993. Geochemistry of surface sediments of Minnesota lakes. In Bradbury, J. P. & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Boulder, Colorado, Geol. Soc. Am. Special Paper 276: 115–133.

  • Dean, W. E., T. S. Ahlbrandt, R. Y. Anderson & J. P. Bradbury, 1996. Regional aridity in North America during the middle Holocene. The Holocene 6: 145–155.

    Google Scholar 

  • Delorme, L. D., 1970. Freshwater ostracodes of Canada. Part IV. Families Ilyocyprididae, Notodromadidae, Darwinulidae, Cytherideidae, and Entocytheridae. Can. J. Zool. 48: 1257.

    Google Scholar 

  • Dorale, J. A., L. A. Gonzáalez, M. K. Reagan, D. A. Pickett, M. T. Murrell & R. G. Baker, 1992. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa. Science 258: 1626–1630.

    Google Scholar 

  • Drummond, C. N., W. P. Patterson & J. C. G. Walker, 1995. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes. Geology 23: 1031–1034.

    Google Scholar 

  • Edwards, T. W. D. & B. B. Wolfe, 1996. Influence of changing atmospheric circulation on precipitation δ18Otemperature relations in Canada during the Holocene. Quat. Res. 46: 211–218.

    Google Scholar 

  • Engleman, E. E., L. L. Jackson, D. R. Norton & A. G. Fischer, 1985. Determination of carbonate carbon in geological materials by coulometric titration. Chem. Geol. 53: 125–128.

    Google Scholar 

  • Eyster-Smith, N.M., H. E. Wright, Jr. & E. J. Cushing, 1991. Pollen studies at Lake St. Croix, a river lake on the Minnesota/Wisconsin border, USA. The Holocene 1,2: 102–111.

    Google Scholar 

  • Fairbanks, R. G., 1990. The age and origin of the ‘Younger Dryas Climate Event’ in Greenland ice cores. Paleoceanography 5: 937–948.

    Google Scholar 

  • Forester, R. M, S. M. Colman, R. L. Reynolds & L. D. Keigwin, 1994. Lake Michigan' Late Quaternary Limnological and Climate History from Ostracode, Oxygen Isotope, and Magnetic Susceptibility. J. Great Lakes Res. 20: 93–107.

    Google Scholar 

  • Forester, R.M., D. L. Delorme & J. P. Bradbury, 1987. Mid-Holocene climate in northern Minnesota. Quat. Res. 28: 263–273.

    Google Scholar 

  • Fritz, P., A. V. Morgan, U. Eicher & J. H. McAndrews, 1987. Stable isotope, fossil coleoptera and pollen stratigraphy in late Quaternary sediments from Ontario and New York State. Palaeogeogr. Palaeoclim. Palaeoecol. 58: 183–202.

    Google Scholar 

  • Fritz, S. C., D. R. Engstrom & B. J. Haskell, 1994. ‘Little Ice Age’ aridity in the North American Great Plains: a high-resolution reconstruction of salinity fluctuations from Devils Lake, North Dakota, USA. The Holocene 4: 69–73.

    Google Scholar 

  • Gat, J. R., C. J. Bowser & C. Kendall, 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data. Geophys. Res. Lett. 21: 557–560.

    Google Scholar 

  • Gorham, E., W. E. Dean & J. E. Sanger, 1983. The chemical composition of lakes in the north-central United States. Limnol. Oceanogr. 28: 287–301.

    Google Scholar 

  • Haskell, B. J., D. R. Engstrom & S. C. Fritz, 1996. Late Quaternary paleohydrology in the North-American Great Plains inferred from the geochemistry of endogenic carbonate and fossil ostracodes from Devils Lake, North Dakota, USA. Palaeogeogr. Palaeoclim. Palaeoecol. 124: 179–193.

    Google Scholar 

  • Haworth, E. Y., 1972. Diatom Succession in a core from Pickerel Lake, Northeastern South Dakota. Geol. Soc. Am. Bull. 83: 157–172.

    Google Scholar 

  • Kelts, K. & A. Schwalb, 1994. Stable isotope stratigraphy of regional environmental dynamics from lacustrine archives. Terra Nostra 1/94: 115–119.

    Google Scholar 

  • Kennedy, K. A., 1994. Early-Holocene geochemical evolution of saline Medicine Lake, South Dakota. J. Paleolim. 10: 69–84.

    Google Scholar 

  • Kutzbach, J. E., 1987. Model simulations of the climatic patterns during deglaciation of North America. In Ruddiman, W. F. & H. E. Wright (eds), North America and adjacent oceans during the last deglaciation. Boulder, Colorado, Geol. Soc. Am., The Geology of North America K3: 425–446.

    Google Scholar 

  • LaBaugh, J.W., T. C. Winter, V. Adomaitis & G. A. Swanson, 1987. Geohydrology and chemistry in prairie wetlands, Stutsman County, North Dakota: U.S. Geological Survey Professional Paper 1431: 1–26.

  • Laird, K. R., S. C. Fritz, E. C. Grimm & P. G. Mueller, 1996a. Century-scale paleoclimatic reconstruction from Moon Lake, a closedbasin lake in the northern Great Plains. Limnol. Oceanogr. 41: 890–902.

    Google Scholar 

  • Laird, K. R., S. C. Fritz, K. A. Maasch & B. F. Cumming, 1996b. Greater drought intensity and frequency before AD 1200 in the Northern Great Plains, USA. Nature 384: 552–554.

    Google Scholar 

  • Lamb, H. H., 1977. Climate — past, present, and future, 2, Climatic history and the future. London, Methuen, 835 pp.

    Google Scholar 

  • Lawrence, J. R. & J. W. C. White, 1991. The elusive climate signal in the isotopic composition of precipitation. In Taylor, H. P., J. R. O'Neil & I. R. Kaplan (eds), Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Geochem. Soc. Spec. Publ. 3: 169–185.

  • Leventer, A., D. F. Williams & J. P. Kennett, 1982. Dynamics of the Laurentide ice sheet during the last deglaciation: evidence from the Gulf of Mexico. Earth Planet. Sci. Lett. 59: 11–17.

    Google Scholar 

  • Lewis, C. F. M., T. C. Moore, Jr., D. K. Rea, D. L. Dettman, A. J. Smith & L. A. Meyer, 1994. Lakes of the Huron basin: Their record of runoff from the Laurentide ice sheet. Quat. Sci. Rev. 13: 891–922.

    Google Scholar 

  • Lister, G. S., 1988a. Stable isotopes from lacustrine Ostracoda as tracers for continental palaeoenvironments. In DeDeckker, P., J. P. Colin & J. P. Peypouquet (eds), Ostracoda in the Earth Sciences. Elsevier, Amsterdam: 201–218.

    Google Scholar 

  • Lister, G. S., 1988b. A15 000Year isotopic record from Lake Zurich of deglaciation and climatic change in Switzerland. Quat. Res. 29: 129–141.

    Google Scholar 

  • Lowell, T. V. & J. T. Teller, 1994. Radiocarbon vs calendar ages of major lateglacial hydrological events in North America. Quat. Sci. Rev. 13: 802–803.

    Google Scholar 

  • Marchitto, T.M. & K.Y. Wei, 1995. History of Laurentide meltwater flowto theGulf ofMexico during the last deglaciation, as revealed by reworked calcareous nannofossils. Geology 23: 779–782.

    Google Scholar 

  • McKenzie, J. A., 1985. Carbon isotopes and productivity in the lacustrine and marine Environment. In Stumm, W. (ed.), Chemical Processes in Lakes, Wiley, NY: 99–118.

    Google Scholar 

  • Moore, D. M. & R. C. Reynolds Jr, 1989. X-ray diffraction and identification and analysis of clay minerals. Oxford Univ. Press, 332 pp.

  • Namias, J., 1983. Some causes of United States drought. J. Climate appl. Meteorol. 22: 30–39.

    Google Scholar 

  • Nativ, R. & R. Riggio, 1990. Precipitation in the southern high plains: Meteorological and isotopic features. J. Geophys. Res. 95D: 22559–22564.

    Google Scholar 

  • O'Brien, S. R., P. A. Mayewski, L. D. Meeker, D. A. Meese, M. S. Twickler & S. I. Whitlow, 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270: 1962–1964.

    Google Scholar 

  • Rodinov, S. N., 1994. Association between winter precipitation and water level fluctuations in the Great Lakes and atmospheric circulation patterns. J. Climate 7: 1693–1706.

    Google Scholar 

  • Schwalb, A., G. S. Lister & K. Kelts, 1994. Ostracode carbonate δ18Oand δ13Csignatures of hydrological and climatic changes affecting Lake Neuchâtel, Switzerland, since the latest Pleistocene. J. Paleolim. 11: 3–17.

    Google Scholar 

  • Schwalb, A., S. M. Locke & W. E. Dean, 1995. Ostracode δ18O and δ13C evidence of Holocene environmental changes in the sediments of two Minnesota lakes. J. Paleolim. 14: 281–196.

    Google Scholar 

  • Simpkins, W. W., 1995. Isotopic composition of precipitation in central Iowa. J. Hydrol. 172: 185–207.

    Google Scholar 

  • Smith, A. J., 1987. The taxonomy and paleoecology of the Holocene freshwater Ostracoda of Pickerel Lake, South Dakota. M.Sc.Thesis, University of Delaware: 244 pp.

  • Smith, A. J., 1991. Lacustrine ostracodes as paleohydrological indicators in Holocene lake records of the north-central United States. Ph.D.Thesis, Providence, Rhode Island, Brown University: 306 pp.

    Google Scholar 

  • Smith, A. J., 1993. Lacustrine ostracodes as hydrochemical indicators in lakes of the north-central United States. J. Paleolim. 8: 121–134.

    Google Scholar 

  • Smith, D. G. & T. G. Fisher, 1993. Glacial Lake Agassiz: The northwestern outlet and paleoflood. Geology 21: 9–12.

    Google Scholar 

  • Stuiver, M., 1970. Oxygen and carbon isotope ratios of freshwater carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257.

    Google Scholar 

  • Stuiver, M., 1975. Climate versus changes in 13C content of the organic component of lake sediments during the late Quaternary. Quat. Res. 5: 251–262.

    Google Scholar 

  • Talbot, M., 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. (Isotope Geoscience Section) 80: 261–279.

    Google Scholar 

  • Teller, J. T., 1985. Glacial Lake Agassiz and its influence on the Great Lakes. In Karrow, P. F. & P. E. Calkin (eds), Quaternary Evolution of the Great Lakes. Geol. Ass. Canada Special Paper 30: 1–16.

  • Teller, J. T., 1987. Proglacial lakes and the southern margin of the Laurentide ice sheet. In Ruddiman, W. F. & H. E. Wright (eds), North America and adjacent oceans during the last deglaciation. Boulder, Colorado, Geol. Soc. Am., The Geology of North America K3: 39–69.

    Google Scholar 

  • Teller, J. T., S. R. Moran & L. Clayton, 1980. The Wisconsinan deglaciation of southern Saskatchewan and adjacent areas; Discussion. Can. J. Earth Sci. 17: 539–541.

    Google Scholar 

  • Von Grafenstein, U., H. Erlenkeuser, J. Müuller & A. Kleinmann-Eisenmann, 1992. Oxygen Isotope Records of Benthic Ostracods in Bavarian Lake Sediments, Reconstruction of Late and Post Glacial Air Temperatures. Naturwiss. 79: 145–152.

    Google Scholar 

  • Von Grafenstein, U., H. Erlenkeuser, J. M üuller, P. Trimborn & J. Alefs, 1996. A 200 year mid-European air temperature record preserved in lake sediments: An extension of the δ18Oair temperature relation into the past. Geochim. Cosmochim. Acta 60: 4025–4036.

    Google Scholar 

  • Watts, W. A. & R. C. Bright, 1968. Pollen, seed, and mollusk analysis of a sediment core from Pickerel Lake, northeastern South Dakota. Geol. Soc. Am. Bull. 79: 855–876.

    Google Scholar 

  • Weber, D. T., 1960. Investigation of the thermal and chemical cycles of Pickerel Lake. South Dakota Dept. Game, Fish, and Parks, Dingell Johnson Project F1R10, Job No. 24: 13 pp.

  • Wright, H. E., Jr., 1967. A square-rod piston sampler for lake sediments. J. Sed. Petrol. 37: 975–976.

    Google Scholar 

  • Wright, H. E., Jr., 1992. Patterns of Holocene climatic change in the midwestern United States. Quat. Res. 38: 129–134.

    Google Scholar 

  • Wright, H. E., Jr., 1993. History of the landscape in the Itasca region. In Bradbury, J. P. & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Boulder, Colorado, Geol. Soc. Am. Special Paper 276: 7–17.

  • Xia, J., E. Ito & D. R. Engstrom, 1997a. Geochemistry of ostracode calcite: Part I. An experimental determination of oxygen isotope fractionation. Geochim. Cosmochim. Acta 61: 377–382.

    Google Scholar 

  • Xia, J., B. J. Haskell, D. R. Engstrom & E. Ito, 1997b. Holocene climate reconstructions from tandem trace element and stable isotope composition of ostracodes from Coldwater Lake, North Dakota, USA. J. Paleolim. 17: 85–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwalb, A., Dean, W.E. Stable isotopes and sediments from Pickerel Lake, South Dakota, USA: a 12ky record of environmental changes. Journal of Paleolimnology 20, 15–30 (1998). https://doi.org/10.1023/A:1007971226750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007971226750

Navigation