Skip to main content
Log in

Fission of Heton-like Vortices under Sea Ice

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Close interactions among vertically stacked pairs of counter-rotating eddies under sea ice were investigated in numerical experiments. The numerical model contains a stratified ocean capped by an ice layer. Under the ice layer, a shallow brine source produces a top cyclone and a submerged anticyclone, while a shallow freshening source generates a top anticyclone and a submerged cyclone. Ice-exerted friction would dissipate the top eddy, leaving the submerged one in lone existence. In this work the winning vorticity is sought from group settings. Arrays of equally spaced salinity sources and sinks, alternate in sign but equal in strength, are employed to produce rows of vertically stacked eddy pairs. Fission occurs when adjacent vortex centers are separated by less than one Rossby radius. This process ejects parcels of density anomalies to the ambient ocean in upper depths. Low salinity anomalies are quickly dispersed into a thin surface layer and are unable to regenerate submerged eddies. High salinity parcels, being difficult to disperse, often maintain or regenerate submerged anticyclones below. Fission is particularly effective if a single row of salinity forcing is used. With multiple rows, fission is active only in the outer rows. The strong interaction among closely packed eddies operates in time scales of tens of days, helping explain the predominance of submerged anticyclones under Arctic sea ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor, G. K. (1967): An Introduction to Fluid Dynamics. Cambridge Univ. Press, 615 pp.

  • Blumberg, A. F. and G. L. Mellor (1987): A description of a three-dimensional coastal ocean circulation model. p. 1-16. In Three-Dimensional Coastal Ocean Models, ed. by N. S. Heaps, Amer, Geophys. Union.

  • Chao, S.-Y. and P.-T. Shaw (1996): Initialization, asymmetry and spindown of Arctic eddies. J. Phys. Oceanogr., 26, 2076-2092.

    Google Scholar 

  • Cushman-Roisin, B. and B. Tang (1990): Geostrophic turbulence and emergence of eddies beyond the radius of deformation. J. Phys. Oceanogr., 20, 97-113.

    Google Scholar 

  • Flierl, G. R. (1988): On the stability of geostrophic vortices. J. Fluid Mech., 197, 349-388.

    Google Scholar 

  • Forsythe, G. E. and C. B. Moler (1967): Computer Solution of Linear Algebraic Systems. Prentice Hall, New Jersey, 148 pp.

    Google Scholar 

  • Griffiths, R. W. and E. J. Hopfinger (1986): Experiments with baroclinic vortex pairs in a rotating fluid. J. Fluid Mech., 173, 501-518.

    Google Scholar 

  • Griffiths, R. W. and E. J. Hopfinger (1987): Coalescing of geostrophic vortices. J. Fluid Mech., 178, 73-97.

    Google Scholar 

  • Helfrich, K. R. and U. Send (1988): Finite-amplitude evolution of two-layer geostrophic vortices. J. Fluid Mech., 197, 331-348.

    Google Scholar 

  • Hibler, W. D., III (1979): A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815-846.

    Google Scholar 

  • Hogg, N. G. and H. M. Stommel (1985a): The heton: an elementary interaction between discrete baroclinic geostrophic vortices and its implications concerning eddy heat-flow. Proc. Roy. Soc. Lond., A397, 1-20.

    Google Scholar 

  • Hogg, N. G. and H. M. Stommel (1985b): Heton explosions: The breakup and spread of warm pools as explained by baroclinic point vortices. J. Atmos. Sci., 42, 1465-1476.

    Google Scholar 

  • Ikeda, M. (1981): Instability and splitting of mesoscale rings using a two-layer quasi-geostrophic model on an f-plane. J. Phys. Oceanogr., 11, 987-998.

    Google Scholar 

  • Jones, H. and J. Marshall (1993): Convection with rotation in a neutral ocean: A study of open-ocean deep convection. J. Phys. Oceanogr., 23, 1009-1039.

    Google Scholar 

  • Legg, S. and J. Marshall (1993): A heton model of the spreading phase of open-ocean deep convection. J. Phys. Oceanogr., 23, 1040-1056.

    Google Scholar 

  • LeShack, L. A., W. D. Hibler, III and F. H. Morse (1971): Automatic processing of Arctic pack ice obtained by means of submarine sonar and other remote sensing techniques. In Propagation Limitations in Remote Sensing, ed. by J. B. Lomax, AGARD Conf. Proc. No. 90, 5–1 to 5–19 [NTIS AGARD-CP-90-71].

  • Manley, T. O. and K. Hunkins (1985): Mesoscale eddies of the Arctic Ocean. J. Geophys. Res., 90, 4911-4930.

    Google Scholar 

  • Mellor, G. L. and T. Yamada (1974): A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791-1806.

    Google Scholar 

  • Nof, D. (1988): The fusion of isolated eddies. J. Phys. Oceanogr., 18, 887-905.

    Google Scholar 

  • Pease, C. H., S. A. Salo and J. E. Overland (1983): Drag measurements for first-year seaice over a shallow sea. J. Geophys. Res., 88, 2853-2862.

    Google Scholar 

  • Perkin, R. G. and E. L. Lewis (1984): Mixing in the West Spitsburgen Current. J. Phys. Oceanogr., 14, 1315-1325.

    Google Scholar 

  • Saunders, P. M. (1973): The instability of a baroclinic vortex. J. Phys. Oceanogr., 3, 61-65.

    Google Scholar 

  • Yasuda, I. and G. R. Flierl (1995): Two-dimensional asymmetric vortex merger: contour dynamics experiment. J. Oceanogr., 51, 145-170.

    Google Scholar 

  • Young, W. R. (1985): Some interactions between small numbers of baroclinic, geostrophic vortices. Geophys. Astrophys. Fluid Dyn., 33, 35-61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, SY., Shaw, PT. Fission of Heton-like Vortices under Sea Ice. Journal of Oceanography 55, 65–78 (1999). https://doi.org/10.1023/A:1007861122826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007861122826

Navigation