Skip to main content
Log in

Low-Dimensional Dynamics in Sensory Biology 1: Thermally Sensitive Electroreceptors of the Catfish

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We report the results of a search for evidence of periodic unstableorbits in the electroreceptors of the catfish. The function of thesereceptor organs is to sense weak external electric fields. Inaddition, they respond to the ambient temperature and to the ioniccomposition of the water. These quantities are encoded by receptorsthat make use of an internal oscillator operating at the level of themembrane potential. If such oscillators have three or more degreesof freedom, and at least one of which also exhibits a nonlinearity,they are potentially capable of chaotic dynamics. By detecting theexistence of stable and unstable periodic orbits, we demonstratebifurcations between noisy stable and chaotic behavior using theambient temperature as a parameter. We suggest that the techniquedeveloped herein be regarded as an additional tool for the analysisof data in sensory biology and thus can be potentially useful instudies of functional responses to external stimuli. We speculatethat the appearance of unstable orbits may be indicative of a stateof heightened sensory awareness by the animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artuso R, Aurell E, Cvitanovic P (1990a) Recycling of strange sets I: Cycle expansions. Nonlinearity3:325–338.

    Google Scholar 

  • Artuso R, Aurell E, Cvitanovic P (1990b) Recycling of strange sets II: Applications. Nonlinearity3:361–375.

    Google Scholar 

  • Bevington PR (1969) Data Reduction and Error Analysis. McGraw-Hill, New York. pp. 48–49.

    Google Scholar 

  • Braun HA, Wissing H, Schäfer K, Hirsch MC(1994) Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature367:270–273.

    Google Scholar 

  • Chang T, Schiff SJ, Sauer T, Gossard J-P, Burke RE (1994) Stochastic versus deterministic variability in simple neuronal circuits. I. Monosynaptic and spinal cord reflexes. Biophys. J.67:671–683.

    Google Scholar 

  • Christini DJ, Collins JJ (1995) Controlling nonchaotic neuronal noise using chaos control techniques. Phys. Rev. Lett.75:2782–2785.

    Google Scholar 

  • Cvitanovic P (1988) Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett.61:2729–2732.

    Google Scholar 

  • Cvitanovic P (1991) Periodic orbits as the skeleton of classical and quantum chaos. Physica D51:138–152.

    Google Scholar 

  • Ditto WL, Rauseo SN, Spano ML (1990) Experimental control of chaos. Phys. Rev. Lett.65:3211–3214.

    Google Scholar 

  • Ditto W, Pecora L (1993) Mastering chaos. Scientific American (August):78–84.

  • Garfinkel A, Spano ML, Ditto WL, Weiss JN (1992) Controlling cardiac chaos. Science257:1230–1235.

    Google Scholar 

  • Goldberger A, Rigney A, West BJ (1990) Chaos and fractals in human physiology. Scientific American262(February):42–49.

    Google Scholar 

  • Grassberger P, Procaccia I (1983) On the characterization of strange attractors. Phys. Rev. Lett.50:346–349.

    Google Scholar 

  • Hunt ER (1991) Stabilizing high-period orbits in a chaotic system—The diode resonator. Phys. Rev. Lett.67:1953–1955.

    Google Scholar 

  • Kaplan DT (1994) Exceptional events as evidence for determinism. Physica D73:38–48.

    Google Scholar 

  • Longtin A, Bulsara A, Moss F (1991) Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett.67:656–659.

    Google Scholar 

  • Longtin A, Bulsara A, Pierson D, Moss F (1994) Bistability and the dynamics of periodically forced sensory neurons. Biol. Cybern. 70:569–578.

    Google Scholar 

  • Longtin A, Hinzer K (1996) Encoding with bursting, subthreshold oscillations and noise in mammalian cold receptors. Neural Comp. 8:217–257.

    Google Scholar 

  • Olsen LF, Schaffer WM (1990) Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics. Science249:499–504.

    Google Scholar 

  • Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys. Rev. Lett.64:1196–1199.

    Google Scholar 

  • Pei X, Moss F (1996) Astatistical measure of unstable periodic orbits in the crayfish caudal photoreceptor. Nature379:618–621.

    Google Scholar 

  • Pei X, Wilkens LA, Moss F (1996) Light enhances hydrodynamic signaling in the multimodal caudal photoreceptor interneurons of the crayfish. J. Neurophysiol.76:3002–3011.

    Google Scholar 

  • Petrov V, Gaspar V, Masere J, Showalter K (1993) Controlling chaos in the Belousov-Zhabotinsky reaction. Nature361:240–243.

    Google Scholar 

  • Pierson D, Moss F (1995) Detecting periodic unstable points in noisy chaotic and limit cycle attractors with applications to biology. Phys. Rev. Lett.75:2124–2127.

    Google Scholar 

  • Rollins RW, Parmananda P, Sherard P (1993) Controlling chaos in highly dissipative systems: A simple recursive algorithm. Phys. Rev. E47:R780–R784.

    Google Scholar 

  • Roy R, Murphy TW, Maier TD, Gillis Z, Hunt ER (1992) Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett.68:1259–1262.

    Google Scholar 

  • Schäfer K, Braun HA, Bretschneider F, Teunis PFM, Peters RC (1990) Ampullary electroreceptors in catfish (Teleostei): Temperature dependence of stimulus transduction. Pflügers Arch. Eur. J. Physiol.417:100–105.

    Google Scholar 

  • Schäfer K, Braun HA, Peters RC, Bretschneider F (1995) Periodic firing pattern in afferent discharges from electroreceptor organs of catfish. Pflügers Arch. Eur. J. Physiol.429:378–385.

    Google Scholar 

  • Schiff SJ, Jerger K, Chang T, Sauer T, Aitken PG (1994a) Stochastic versus deterministic variability in simple neuronal circuits. II. Hippocampal slice. Biophys. J.67:684–691.

    Google Scholar 

  • Schiff SJ, Jerger K, Duong D, Chang T, Spano ML, Ditto WL(1994b) Controlling chaos in the brain. Nature370:615–620.

    Google Scholar 

  • Scott DA, Schiff SJ (1995) Predictability of EEG Interictal Spikes. Biophys. J.69:1748–1757.

    Google Scholar 

  • Shinbrot T, Ott E, Grebogi C, Yorke JA (1993) Using small perturbations to control chaos. Nature363:411–417.

    Google Scholar 

  • So P, Ott E, Schiff SJ, Kaplan DT, Sauer T, Grebogi C (1996) Detecting unstable periodic orbits in chaotic experimental data. Phys. Rev. Lett.76:4705–4708.

    Google Scholar 

  • Strogatz SH (1994) Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741.

    Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: The method of surrogate data. Physica D58:77–94.

    Google Scholar 

  • Weiss JN, Garfinkel A, Spano ML, Ditto WL (1994) Chaos and chaos control in biology. J. Clin. Invest.93:1355–1360.

    Google Scholar 

  • Witkowski FX, Kavanagh KM, Penkoske PA, Plonsey R, Spano M, Ditto WL, Kaplan DT (1995) Evidence for determinism in ventricular fibrillation. Phys. Rev. Lett.75:1230–1233.

    Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D16:285–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, H.A., Schäfer, K., Voigt, K. et al. Low-Dimensional Dynamics in Sensory Biology 1: Thermally Sensitive Electroreceptors of the Catfish. J Comput Neurosci 4, 335–347 (1997). https://doi.org/10.1023/A:1008852000496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008852000496

Navigation