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Abstract

In data assimilation applications using ensemble Kalman filter methods, localization is
necessary to make the method work with high-dimensional geophysical models. For en-
semble square-root Kalman filters, domain localization (DL) and observation localization
(OL) are commonly used. Depending on the localization method, one has to choose ap-
propriate values for the localization parameters, such as the localization length and the
weight function. Although frequently used, the properties of the localization techniques
are not fully investigated. Thus, up to now an optimal choice for these parameters is a
priori unknown and they are generally found by expensive numerical experiments. In this
study, the relationship between the localization length and the ensemble size in DL and OL
is studied using twin experiments with the Lorenz-96 model and a 2-dimensional shallow
water model. For both models, it is found that the optimal localization length for DL and
OL depends linearly on an effective local observation dimension that is given by the sum of
the observation weights. This quantity defines the degrees of freedom that are required for
assimilating observations, while the ensemble size defines the available degrees of freedom.
Setting the localization radius such that the effective local observation dimension equals
the ensemble size yields an adaptive localization radius. Its performance is tested using a
global ocean model. The experiments show that the analysis quality using the adaptive
localization is similar to the analysis quality of an optimally tuned constant localization
radius.
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1 Introduction

In ocean modeling and weather forecasting an estimate of the current state is important
to initialize forecasts of the dynamical process. In sequential data assimilation, variants
of the Ensemble Kalman Filter (EnKF, Evensen, 1994) are commonly used. To deal with
the particular problems of the geophysical systems many improvements of the methods,
e.g. covariance inflation and localization (Houtekamer and Mitchell, 1998), have been
introduced. Typically, the state dimension of the models is very high, but only a small
ensemble is feasible to use. This introduces noise and spurious correlations in the covariance
matrices and limits the degrees of freedom for the analysis, which are defined by the
ensemble size. Localization is used to access the problem of spurious correlations, and
increases the degrees of freedom by calculating a local analysis in every grid point. This
approach is justified by the fact that dynamical systems can locally behave like a low
dimensional systems (see Patil et al., 2001). The positive effect of localization for ensemble
Kalman filters has recently been described for different applications in oceanography and
meterology (e.g. Nerger et al., 2006; Janjić et al., 2011; Otkin, 2012; Losa et al., 2012; Kang
et al., 2012).

Localization can be applied to the covariance matrices by point-wise multiplication
(Houtekamer and Mitchell, 2001), referred to as covariance localization (CL). Alterna-
tively, the domain is decomposed as in domain localization (DL) and separate analysis for
each subdomain are calculated (Houtekamer and Mitchell, 1998). The latter method can
be combined with observation localization (OL), where the observations are weighted ac-
cording to their distance, as described in Hunt et al. (2007). Several studies (Miyoshi and
Yamane, 2007; Greybush et al., 2011; Sakov and Bertino, 2011; Nerger et al., 2012) inves-
tigated the relationship between CL and OL and found that the results were comparable,
even though the effective localization length is shorter for OL than for CL. The relation
between different weight functions and localization radii was examined in Whitaker and
Hamill (2002). They found that using a weight function similar to the Gaussian curve
(see Gaspari and Cohn, 1999, Eq. 4.10) produces better results than using a Heaviside
step function. For a regional ocean model, the effect of different localization radii in DL
was examined in Nerger et al. (2006). Yoon et al. (2010) have shown that localization
improves the estimation of the covariances. According to their findings the localization
radius should be chosen large enough to get most of the relevant covariances. For all of
these localization methods, extensive tuning of the localization parameters is necessary to
achieve the optimal results.

Recently, adaptive localization methods (Anderson, 2007, 2012; Bishop and Hodyss,
2007, 2009) have been developed to estimate the correlations between different variables
flow-dependently. Further, information-based localization schemes have been developed
(Zupanski et al., 2007; Migliorini, 2013). As shown for different examples, these methods
improve the assimilation results, but they still require the choice of different parameters
or are computational very expensive.

Here, an alternative approach to define the localization radius is investigated. From
experiments using two small models, a relationship between the ensemble size and the
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optimal localization radius is derived in the context of dense observations with uniform
error statistics. Examples of these kind of observations are gridded satellite observations
of sea surface temperature or sea surface elevation, which are frequently used in ocean data
assimilation applications (see e.g. Janjić et al., 2012; Losa et al., 2012; Sakov et al., 2012).
The relation is then used to define an adaptive localization method and tested using a
global ocean model.

The article is structured as follows. In Section 2 the assimilation algorithm and the
localization techniques are discussed. Afterwards, the models are introduced and the nu-
merical experiments are described in Section 3. In Section 4, the results for the Lorenz-96
model are presented. The experiments using the Shallow-Water-Equations are discussed
in relation to the Lorenz-96 model in Section 5. In Section 6 assimilation results using a
global ocean model are discussed and conclusions are drawn in Section 7.

2 Assimilation algorithm

The assimilation experiments in this study are performed with the widely used Ensemble
Transform Kalman Filter (ETKF, Bishop et al., 2001) with localization (Hunt et al., 2007).
In this section, the ETKF and the localization techniques are reviewed.

2.1 ETKF

Data assimilation methods provide an estimate of the state of a system xk ∈ Rn at time k
given the model dynamics

xk+1 = M(xk) + εk (1)

and a set of observations yo
k ∈ Rp. These are related to the model state via the observation

operator H
yo
k = H(xk) + ηk. (2)

The errors ε ∈ Rn and η ∈ Rp are assumed to be Gaussian with zero mean and covariance
matrices Q ∈ Rn×n and R ∈ Rp×p respectively . Below, the time index k is omitted.

The background state xf and the covariance matrix Pf are now represented by an en-
semble of state realisations xf(i), i ∈ {1, . . . , N}. The matrix Xf denotes the matrix whose
column vectors are the ensemble members, and Xf ′

is the matrix of ensemble perturbations.
The state estimate is given by the mean of the ensemble x̄.

The idea of the ETKF is to carry out the analysis in the ensemble space and then
map the corrections into the state space via the ensemble perturbations. Here, only the
equations for the ETKF are given. For a detailed derivation of the filter equations see
Hunt et al. (2007).

At an analysis time, an analysis weight vector w̄a and an analysis covariance matrix
P̃

a
are calculated in the space spanned by the ensemble perturbations:

P̃
a

= [(N − 1)Iρ+ (HXf ′
)TR−1HXf ′

]−1 (3)

w̄a = P̃
a
(HXf ′

)TR−1(yo −Hx̄f ) (4)
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The factor ρ ≥ 1 is used to inflate the ensemble (see Hunt et al., 2007). The forecast
ensemble is then

Xa = x̄f1T + Xf ′
(w̄a1T + [(N − 1)P̃

a
]1/2). (5)

During the forecast phase, the ensemble members are all moved forward in time using the
full nonlinear model

xf(i) = M(xa(i)) (6)

for all i = 1 . . . N .

2.2 Localization in ETKF

For a local analysis with the ETKF, the domain is decomposed into different local regions
(Houtekamer and Mitchell, 1998), e.g. every single grid point. An analysis increment
is then calculated separately for every local domain. For the local analysis domains a
support radius l for the observations is defined. Only observations closer than l from
the analysis point will have a non-zero weight and thus influence on the local analysis.
According to Hunt et al. (2007), the observations used for two neighbouring analysis regions
should overlap significantly to ensure that the weights are similar and a smooth analysis
is produced. Except for very small localization radii, this was ensured in the experiments.

The observations inside each observation region are weighted according to their distance
to the analysis point. These weights are applied by Schur-multiplying the inverse of the
observation covariance matrix R by a matrix constructed from a correlation function (see
Hunt et al., 2007).

We examine the effect of two localization techniques, domain localization (DL) and
observation localization (OL) that are characterised by their weighting functions. DL was
formulated without explicit weights to the observations (see e.g. Houtekamer and Mitchell,
1998; Nerger et al., 2006), but implicitly the weights

wDL(z, l) :=

{
1 if |z| ≤ l

0 else

are used. Here, l is a predefined cut-off radius. This weighting corresponds to a unit weight
inside an observation domain and zero outside.

For OL, a fifth-order polynomial (Gaspari and Cohn, 1999, eq. 4.10) is used for weight-
ing the observations. This function is very popular because its shape is similar to the
probability density function of a normal distribution but has compact support. The equa-
tions can be written as

wOL(z, l) :=


f1(z/2l) if 0 ≤ |z| ≤ l/2

f2(z/2l) if l/2 ≤ |z| ≤ l

0 if |z| ≥ l
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3c
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OL is the current standard scheme for localization in the LETKF (e.g. Miyoshi and
Yamane, 2007). DL is an older formulation (see e.g. Houtekamer and Mitchell, 1998; Nerger
et al., 2006) and nowadays it is unusual to use DL, because OL yields better assimilation
performance. However, the constant observation weights allow to investigate the influence
of localization without considering the effects of varying weights. If the results from DL are
then compared to the variable weight functions of OL, the basic properties of localization
become clearer.

3 Configuration of Numerical Experiments

The numerical experiments are performend with the Lorenz-96 model (Lorenz, 1995) and a
shallow-water model. Although being rather simple, both models exhibit strong nonlinear
behaviour. For the Lorenz-96 model this was described in (Lorenz, 1995). The shallow
water model configuration used here can develop strongly nonlinear dynamics in the form of
a meandering zonal jet and associated eddies (see Krysta et al., 2011). Since the dynamics
of the models are distinct, the comparison of the results from both models provides insight
to which extent the localization behaviour is independent of the model.

3.1 Experiments with the Lorenz-96 model

The characteristics of the localization techniques are first investigated with twin experi-
ments using the 40-dimensional Lorenz-96 model (Lorenz, 1995). For the twin experiments,
the initial condition X ∈ R40 with X20 = 8.008 and Xj = 8 for all i 6= 20 is first integrated
for 1000 time steps by using the classical forth-order Runge-Kutta scheme with a time step
of 0.05. By integrating the model for another 5000 time steps, a trajectory is obtained that
represents the truth. The observations are generated by adding Gaussian distributed ran-
dom numbers with unit variance and zero mean to the truth. All grid points are observed.
The observation error covariance matrix R is chosen to be diagonal with the variance of
the observation error on the diagonal. A constant inflation factor of ρ = 1.05 is used to
inflate the background covariance matrix.

The initial ensemble is generated by second-order exact sampling (Pham, 2001) from
a model run over 10000 time steps. The ensemble size is varied between 5 and 28. Lo-
calization radii between 0 and 20 are used for the experiments with DL, while for OL
localization radii from 0 to 50 are used. All experiments are repeated ten times with
different random numbers for the ensemble initialisation and observations. The ETKF as
implemented in the Parallel Data Assimilation framework (PDAF, Nerger and Hiller, 2013,
http://pdaf.awi.de) is used for the experiments.

5



For evaluating the assimilation performance, the root mean squared error, averaged
over the assimilation times and the repetitions is used. This quantity will be denoted as
MRMSE.

3.2 Experiments with the Shallow water model

A 2D model using the shallow water equations (see Krysta et al., 2011) is used to asses
the localization in case of a multivariate model. A detailed review of the model is given in
Appendix A. The model is calculated on a regular square grid with 25km resolution. At
each grid point, the sea surface height (h), the horizontal (u) and the vertical velocities
(v) are defined. The state vector has 19380 elements, of which only the sea surface height
is observed in the experiments. Both, fully observed h and partial observations of h are
considered in the experiments. For the partial observations, every second and every third
point in both directions is observed.

The experiment is initialised by integrating the initial state h = 500m and u = v =
0m s−1 for 15 years. The first 5 years are used to spin up the model state. A sample of
every second day from year 6 to 15 is used to initialise the ensemble through second-order-
exact sampling. Synthetic observations are generated from the sea surface height with zero
mean and constant variance of 2m2. The observation errors are assumed to be uncorrelated
and are assimilated once a day.

A local analysis is calculated for every single grid point. The influence region for the
observations is a circle of radius l around the analysis location. The weighting is applied
according to the Euclidean distance. For the experiments, localization radii between 20km
and 350km with a step size of 10km and ensemble sizes from 5 to 40 are used.

The inflation factor is set to ρ = 1.08. It is tuned so that the estimated and true
errors are in the same order of magnitude for several converged configurations. Thus, is
not tuned to achieve the minimal error, but such that the following results do not depend
on the choice of the inflation factor. For the experiments, the same configuration of PDAF
as in section 3a was used.

To compare the analysis quality of the different experiments, the root mean squared
error (RMSE) of the height field h is examined.

4 Localization behaviour with the Lorenz-96 model

4.1 Optimal localization radius for DL

Figure 1 shows in the top row the MRMSE for all considered parameter values N and l
for DL. The parameter region can be clearly divided into diverged and converged results.
An experiment is defined as divergent, if the MRMSE of an experiment is larger than the
observation error. For every ensemble of less than 21 members, filter divergence occurs
when a certain localization radius is exceeded (e.g. l = 4 for N = 5). In the following, this
radius is denoted by ldiv.
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Figure 1: MRMSE for the assimilation experiments with DL for the different parameter
values (top) and for OL (bottom) with the Lorenz-96 model.

For a constant localization radius, increasing the ensemble size reduces the MRMSE.
However, after the most information content from the observations is extracted, very little
error reduction is gained (e.g. for N > 14 for l = 7).

If the ensemble size is kept constant and the localization radius is increased, the error
shrinks until an optimal localization radius, denoted by lopt, is reached. Increasing l beyond
this radius deteriorates the assimilation results and filter divergence can occur.

In the top panel of figure 2, lopt and ldiv as functions of the ensemble size N are
shown for DL. The optimal value for lopt is always close to N/2. Filter divergence occurs
approximately if the localization radius, measured in grid points, exceeds the number of
ensemble members. As long as in a local analysis not all observations are used, lopt and ldiv
depend linearly on the ensemble size. For DL, the behaviour changes if the ensemble size is
big enough so that the filter converges without localization. In this case, filter divergence
doesn’t occur anymore and the global filter produces the best results.
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Figure 2: The optimal and divergent localization radii for DL (top) and OL (bottom).

4.2 Optimal ensemble size for OL

For OL, the MRMSE for various localization radii and ensemble sizes is also divided into
regions where the filter diverges or converges (Fig. 1, bottom). The assimilation converges
as long as l is only slightly bigger than 2N . Compared to DL, the convergence region in
case of OL is enlarged approximately by a factor of two. A similar relationship holds for the
optimal localization radius. Since more observations are assimilated, the best assimilation
results for OL are more accurate than the ones for DL, even with less ensemble members.
As expected, the observation weighting of OL results in a smaller error with a minimum
MRMSE=0.1883 compared to MRMSE=0.1901 in case of DL.

The lower panel of Fig. 2 shows that the relationship between the optimal localization
radius lopt and the ensemble size N is also linear. However, with OL longer localization
radii can be used than with DL. The behaviour of the optimal localization radius for
N > 20 is not representative for OL. The reason is that lopt is bounded by the largest
tested localization radius. Thus, for N > 20 lopt is likely to be larger than the radii tested
here.
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4.3 Sampling quality of the covariance matrix

The localization implicitly modifies the state covariance matrix. Here, it is examined how
well the true covariance matrix is approximated with localization. The results are shown
for a single ensemble size (N = 16), but also hold for other choices.

The true covariance matrix Pt is generated from a twin experiment using an Ensemble
Kalman Filter with an ensemble size of 128. Since the ensemble is significantly larger than
the state dimension, this covariance matrix should be close to the truth.

At the end of the assimilation experiment, the normalised difference between the true
covariance matrix and the analysis ensemble covariance matrix

δ(Pal) :=

∥∥Pal −Pt
∥∥
F∥∥Pt

∥∥
F

(7)

is compared in the Frobenius norm ‖ ‖F . Here, the matrix Pal denotes the ensemble
covariance matrix calculated from an assimilation experiment with the localization radius
l using the LETKF with OL .

In the local filter, not all elements of the covariance matrix are used. To take this into
account, we define the matrix Pl as the matrix P with all elements (p)ij set to zero that
correspond to long distances beyond the localization radius i.e.

(p)ij =

{
pij if ‖xi − xj‖ ≤ l

0 else.
(8)

The quantity δl is then defined as

δl(P
al) :=

∥∥Pal
l −Pt

l

∥∥
F∥∥Pt

l

∥∥
F

. (9)

In Fig. 3, δ and δl are plotted for the case of OL for N = 16 over all localization radii.
Both curves show small errors in the covariance estimates as long as l < 13. Increasing
l beyond 13 worsens the estimation of the covariances. If only the observation at each
analysis grid point is used (l = 0), the estimates of the variance are even worse than in
the case when all observations are assimilated at once. Despite this, the state estimation
with l = 0 is improved over the global filter (see Fig. 1). The smallest error is obtained
for the localization radius l = 11. This is consistent with the optimal localization radius
in Section 44.1. For l > 14 the assimilations become unstable until divergence happens.

Compared to the global estimate Pal , the error of the local estimate Pal
l is always

smaller for all localization radii. This shows that the neglected covariances are noisy and
therefore it is beneficial to omit those noisy parts. For l between 3 and 11 the error
of the local approximation has roughly the same smallest value. In this interval, the
covariances are gradually improved by increasing the localization radius. The interval
becomes narrower if a smaller ensemble is used. Thus, it becomes more difficult to find
the optimal localization radius. Overall, this experiment shows, that a good choice of the
localization radius improves the estimate of the covariance matrix P.
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Figure 3: The error of the global and local covariance matrix to the true covariance matrix
calculated from an experiment with 128 ensemble members.

4.4 Relation between domain- and observation localization

Domain and observations localization differ only in their weight functions. To relate the
localizations of DL and OL, we define an effective observation dimension dWk

for an assim-
ilation experiment as the sum of the local weights used to compute the analysis, i.e.

dWk
:=

pl∑
i=0

Wk(i, l) (10)

where pl is the number of observations in each local region, l the localization radius, and k
the localization type (OL or DL). Thus, the effective observation dimension takes not only
into account the number of observations but also the weights given to the observations.
Because in the experiments the observations have uniform density, the effective observation
dimension is identical for all grid points. It follows directly from the definition (10) that
for DL the effective observation dimension dWDL

is equal to the number of observations.
In Fig. 4, dW is plotted for the optimal and divergence localization radii for both DL and
OL. The optimal effective observation dimensions are in good agreement for ensemble sizes
below 16 with a difference of at most one. For 16 ≤ N ≤ 20 the difference gets slightly
bigger. Only values up to N = 20 are shown, because, as noted in Section 4b, the effective
observation dimension for OL is bounded by the considered localization radii for N ≥ 20.

The effective observation dimension where divergence occurs (bottom of Fig. 4) is nearly
equal forN < 9 for DL and OL. AboveN = 9, the observation dimension where the analysis
with OL diverges is slightly smaller that the one for domain localization. Yet, the trend
for the two functions is still similar. Above N = 17, the filter with OL converged for all
considered localization radii. The behaviour of the curves is also similar if an exponential
weight function is used (not shown). Over all, by decreasing the weight of the observations,
they do not constrain the ensemble as strong anymore and the number of observations that
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Figure 4: Comparison of the optimal effective observation dimension (top) and the effective
observation dimension where the filter on average diverges (bottom).

can effectively assimilated is increased.

5 Localization with the Shallow Water Equations

In this section the localization experiments are repeated using a model with different
dynamics, to examine whether similar results are obtained. In addition, the shallow water
model is multivariate, so an additional degree of complexity is introduced.

The MRMSEs for the experiments with the shallow water model (see Fig. 5) are quali-
tatively similar to the ones for the Lorenz-96 model. The ability of the filter to handle more
observations with increasing ensemble size is clearly visible (e.g. the step from l = 70km
to l = 80km for N = 8 to N = 9) for DL (Fig. 5, top). Compared to the experiments
with the Lorenz-96 model, the convergence region is not increasing uniformly with grow-
ing ensemble size. This is due to the nonuniform increase of the number of observations
in the local domains because the domain is 2-dimensional. The smallest errors for the
considered ensemble sizes are achieved for localization radii between 80km and 100km. If
l is increased beyond this value, the analysis quality is degraded. For OL (Fig. 5, bot-
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Figure 5: MRMSE for the assimilation experiments with DL for the different parameter
values (top) and for OL (bottom) with the shallow water model.

tom), the methods behave more uniformly, since the weighting of the observations allows
a smoother increase of the observation dimension. This leads to an almost linear increase
of the optimal localization radius for N ≤ 14.

For OL, the convergence region is almost twice as large compared to DL. This occurs
because the weight of distant observations is decreased so that more observations can
assimilated in a beneficial way. As a consequence, the errors are also slightly reduced. The
smallest MRMSE = 0.27 is obtained with a localization radius between 190km and 210km
and the largest investigated ensemble size.

In Fig. 6, the effective observation dimensions for the experiments are shown. For DL,
the optimal observation dimension lopt is nearly a step function. This means that a much
bigger ensemble is needed to assimilate the step-wise increase of observations in an optimal
way. This effect does not occur for OL where the optimal observation dimension is growing
at a slower rate. For N = 15 and N = 28, the optimal observation dimension for DL and
OL are almost the same. In between, the optimal observation dimension increases about
linearly for OL compared to the sudden step for DL. The optimal value for the effective
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Figure 6: The optimal and divergent observation dimensions for DL (top) and OL (bottom)
for the shallow water model.

observation dimension is slightly smaller than the ensemble size N for OL, and depends
linearly on the ensemble size.

For the effective observation dimension ldiv at which the filter diverges, the behaviour
is slightly different. Divergence occurs for both weighting functions for nearly the same
effective observation dimension. Again, the dependence on N is smoother for OL than for
DL.

The optimal localization radii for the unobserved u and v fields are almost equal to the
optimal localization radius for the height field. There is only a minor difference for DL,
when the local number of observations is heavily increased (e.g. l = 70km to l = 80km).
At this point the optimal localization radius is a bit smaller for the u and v fields than for
the h field (not shown).

For DL, the slopes of lopt and ldiv as functions of the ensemble size are reduced com-
pared to the experiment with the Lorenz-96 model. Nevertheless, the effective observation
dimensions for DL and OL are very similar, thus the degrees of freedom for both methods
are very close to each other.

If the observation density is reduced, the optimal effective observation dimension still
depends linearly on the ensemble size (see Fig. 7). The smaller the observation density,
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Figure 7: The optimal effective observation dimension with observation frequency one
(blue), two (green) and three (red). For each observation frequency, the optimal value
depends linearly on the ensemble size. The smaller the the observation density the smaller
the slope of the function.

the smaller the optimal effective observation dimension becomes. Thus, if not the whole
field is observed, the optimal localization radius has to be normalised by the observational
density. This becomes especially an issue, if the spatial distribution of the observations is
not regular. This case will be examined in future studies.

Figure 5 also allows to estimate the optimal localization radius as a function of the
ensemble size. The relationship is approximately

lopt ≈ 8

√
N

40
dx (11)

where dx denotes the grid spacing. At this localization radius, the effective observation
dimension is approximately equal to the ensemble size. This relation should hold in general
for dense observations that are distributed in 2 dimensions and a regular orthogonal model
grid.

6 Localization in a global ocean model

The experiments discussed above indicate that an optimal localization radius is obtained
when the effective observation dimension is approximately equal to the ensemble size. To
assess whether this localization can be applied in a realistic large-scale model, we apply
it here in twin experiments using a global configuration of the finite-element sea-ice ocean
model (FESOM, Danilov et al., 2004; Wang et al., 2008; Timmermann et al., 2009). The
twin experiments are similar to an application of FESOM by Janjić et al. (2012) where
real satellite dynamic ocean topography data was assimilated.
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6.1 Experimental setup

FESOM is an ocean general circulation model that utilises finite elements to solve the
hydrostatic ocean primitive equations. Unstructured triangular meshes are used, which
allow for a varying resolution of the mesh. The configuration used here has a horizontal
resolution of about 1.3◦ with refinement in the equatorial region. The model uses 40 vertical
levels.

For the data assimilation, FESOM was coupled to the assimilation framework PDAF
(Nerger et al., 2005; Nerger and Hiller, 2013, http://pdaf.awi.de) into a single program.
The state vector includes the sea surface height (SSH) and the 3-dimensional fields of
temperature, salinity, and the velocity components. The state vector has a size of about
10 million. For the twin experiments, the model is initialised from a spin-up run and a
trajectory over one year is computed. This trajectory contains the model fields at each
tenth day and represents the “truth” for the assimilation experiments. An ensemble of 32
members is used, which is generated by second-order exact sampling from the variability of
the true trajectory (see Pham, 2001). The initial state estimate is given by the mean of the
true trajectory. Pseudo observations of the SSH at each surface grid point are generated
by adding uncorrelated random Gaussian noise with a standard deviation of 5 cm to the
true model state. The analysis step is computed after each forecast phase of 10 days with
an observation vector containing about 68000 observations. Overall, the experiments were
conducted over a period of 360 days.

The experiments use the ETKF with OL. Two experiments with fixed localization radii
of l=500km and l=1000km are performed. A third experiment uses the localization radius
determined such that the effective observation dimension is equal to the ensemble size.
The inflation factor was set to ρ = 1.1.

6.2 Assimilation performance

Figure 8 shows of the RMS errors of the sea surface height over time relative to an ex-
periment without data assimilation for the three experiments. For the fixed radius of
l=1000km, the relative RMS error is quickly reduced below 0.5, but increases again after
day 150. The relative RMS errors for the fixed radius of 500km and the experiment with
the localization radius based on the effective observation dimension are similar and the
error generally decrease over time. However, the variable localization results in smaller
RMS errors than the fixed localization radius. In the second half of the experiment, the
RMS errors obtained with the variable localization radius are even smaller than those for
the fixed localization radius of 1000km.

Overall, the experiments show that the effective observation dimension can be used to
specify a spatially varying localization radius that yields estimates of similar quality than
those produced by a fixed radius. However, while the fixed radius has to be tuned with
several experiments this is not required for the variable radius.
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Figure 8: RMS errors for the assimilation experiment using FESOM relative to the errors
from an experiment without assimilation. Shown are the relative RMS errors for fixed
localization radius of 1000km (black), 500km (red), and the variable localization derived
from the effective observation dimension (blue).

7 Conclusion

In this study, the optimal value for the localization radius in domain localization and ob-
servation localization was examined using numerical experiments. Using the Lorenz-96
model and a nonlinear shallow-water model allowed to assess the localization behaviour
with two simple nonlinear models with different dynamics. The main focus was on dense
observations with uniform observational error, which are used in real assimilation applica-
tions, e.g., as gridded satellite observations of the ocean surface temperature or sea surface
height. For this type of observations, it was possible to assess the relation of the localization
radius to the ensemble size over the whole model domain.

The localization radius is optimal if the estimation errors are minimal. It depends on
the ensemble size and varies for different weight functions. Typically, the optimal radius
is determined by experimentation. Yet, one can define an effective observation dimension
given as the sum of the observation weights involved in a local analysis. The optimal
localization radius was obtained, if the effective observation dimension was about equal to
the size of the ensemble. Moreover, the optimal value of the effective observation dimension
is constant for different weighting functions. This situation can be explained by the fact
that the degrees of freedom for the analysis are determined by the rank of the ensemble.
The degrees of freedom are optimally utilized if the ensemble size equals the effective
observation dimension. In the case of constant observation errors, the degrees of freedom
are distributed over different numbers of observations for different weight functions. If the
observation network is less dense, other effects, like sampling error for distant observations,
become more important so that this relation is weaker. For multivariate data assimilation
in the shallow water model, the optimal effective observation dimension was the same for all
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three model fields. If the observation density is reduced, the linear relation in the shallow
water model was still conserved, but the slope was different. For both models, the optimal
value of the effective observation dimension was roughly equal to the ensemble size if a field
was completely observed. For dense observations that are distributed in two dimensions, a
simple relation between the ensemble size and the optimal localization radius was deduced
from the experiments. This relation can be used to define an adaptive localization radius
that ensures that the effective observation dimension is equal to the number of ensemble
members. The relation was tested using a global ocean model where synthetic observations
of the sea surface height were assimilated. With the adaptive localization, without tuning,
a similar error reduction as using an optimally tuned fixed localization radius was achieved.
This study lead to a simple relation between the ensemble size and the localization radius
that should result in the minimal analysis errors of the observed field for dense observations.
However, in real applications the localization radius can be influenced by other factors. For
example, it is known that localization influences balances in the model state and a longer
localization radius will have a smaller impact on the balances. Accordingly, one might
prefer a longer localization radius in multivariate assimilation applications. In addition,
the study only considered twin experiments. When assimilating real observations one
can encounter biases and the observation error covariance matrix might be incorrectly
estimated. It is unclear to which extend these factors can require the adaption of the
localization radius to obtain overall optimal assimilation results.

The findings of this study hold for dense observations with uniform observation errors
and spatially constant inflation. The experiments with lower observation density indi-
cate that the chosen effective localization dimension has to be smaller in this case, to
account for the lack of information. This effect might be related to the sampling quality
of the ensemble-estimated state error covariance matrix. When observations with spatially
varying error variances and varying spatial distribution are assimilated, the global measure-
ments of this study are no longer possible. One can expect that observations with different
error variances show a varying influence on the analysis step that should be accounted for
in the localization, perhaps by information-based methods (e.g. Migliorini, 2013). These
aspects will be investigated in a future study.

Appendix A

7.1 The shallow-water equations

The shallow-water model used in section 4 is similar to that used in Krysta et al. (2011).
For completeness, the equations are given here. This 2-dimensional model consist of the
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horizontal and vertical velocities (u, v) and the water height h. The model equations are:

δtu+ uδxu+ vδyu− fv + g∗δxh =
τx
ρ0h
− ru+ ν∆u

δtv + uδxv + vδyv + fu+ g∗δyh =
τy
ρ0h
− rv + ν∆v

δth+ δx(hu) + δy(hv) = 0

The model domain is chosen as the square domain [0, L]× [y0−L, y0 +L] with length L =
2000km and y0 = 0. The Coriolis parameter f is approximated by a β-plane approximation

f(y) ≈ f(y0) + β(y − y0) (12)

where β = 2 ·10−11 m−1 s−1. The variable g∗ denotes the reduced gravity, ρ0 water density,
ν diffusivity friction and r the bottom friction coefficient. The system is driven by a wind
stress τ = (τx, τy)

T , which is given by τx(y) = τ0 cos[2π(y − y0)/L] and τy = 0. The
constants are chosen as f(0) = 7 · 10−5s−1, g∗ = 0.02ms−2, ρ0 = 103km−3, τ0 = 0.015N
m−2, r = 5 · 10−9s−1 and ν = 9m2s−1.

The domain is discretized on a regular Arakawa C grid with 25km resolution in both
directions. For the boundary, a no-slip condition is used, i.e. u = v = 0. As time stepping
method, a leapfrog scheme (Sadourny, 1975) smoothed by the Robert-Asselin filter (Robert,
1966) with α = 0.01 and ∆t = 30min is used.
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Nerger, L., W. Hiller, and J. Schröter, 2005: PDAF - the parallel data assimilation frame-
work: Experiences with Kalman filtering. Use of High Performance Computing in Me-
teorology - Proceedings of the 11. ECMWF Workshop, 63–66.

Nerger, L., T. Janjic, J. Schroeter, and W. Hiller, 2012: A regulated localization scheme
for ensemble-based Kalman filters. Quart. J. Roy. Meteor. Soc., 138, 802–812.

Otkin, J. A., 2012: Assessing the impact of the covariance localization radius when assim-
ilating infrared brightness temperature observations using an ensemble Kalman filter.
Mon. Wea. Rev., 140, 543–561.

Patil, D., B. Hunt, E. Kalnay, J. Yorke, and E. Ott, 2001: Local low dimensionality of
atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881.

Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly non-
linear systems. Mon. Wea. Rev., 129, 1194–1207.

Robert, A. J., 1966: The integration of a low order spectral form of the primitive meteo-
rological equations. J. Meteor. Soc. Japan, 44, 237–245.

Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equa-
tions. J. Atmos. Sci., 32, 680–689.

Sakov, P. and L. Bertino, 2011: Relation between two common localization methods for
the EnKF. Comput. Geosci, 15, 225–237.

Sakov, P., F. Counillon, L. Bertino, K. A. Lisæter, P. R. Oke, and A. Korablev, 2012:
TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic.
Ocean Science, 8 (4), 633–656.

Timmermann, R., S. Danilov, J. Schröter, C. Böning, D. Sidorenko, and K. Rollenhagen,
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