

2

Carbon in Earth

Reviews in Mineralogy and Geochemistry **75**

TABLE OF CONTENTS

Why Deep Carbon?

Robert M. Hazen, Craig M. Schiffries

FRONTIERS OF DEEP CARBON RESEARCH	.4
ACKNOWLEDGMENTS	.5
REFERENCES	.5

Carbon Mineralogy and Crystal Chemistry

Robert M. Hazen, Robert T. Downs Adrian P. Jones, Linda Kah

SYSTEMATIC CARBON MINERALOGY 8 Carbon allotropes. 8 Carbides 13 Rhombohedral carbonates 19 The aragonite group. 27 Other anhydrous carbonates 28 Hydrous carbonates 31 Minerals incorporating organic molecules 32 Mineral-molecule interactions. 34 CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY 35 ACKNOWLEDGMENTS. 35 REFERENCES 36	INTRODUCTION	7
Carbides 13 Rhombohedral carbonates 19 The aragonite group 27 Other anhydrous carbonates 28 Hydrous carbonates 31 Minerals incorporating organic molecules 32 Mineral-molecule interactions 34 CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY 35 ACKNOWLEDGMENTS 35	SYSTEMATIC CARBON MINERALOGY	8
Rhombohedral carbonates19The aragonite group27Other anhydrous carbonates28Hydrous carbonates31Minerals incorporating organic molecules32Mineral-molecule interactions34CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY35ACKNOWLEDGMENTS35	Carbon allotropes	8
The aragonite group27Other anhydrous carbonates28Hydrous carbonates31Minerals incorporating organic molecules32Mineral-molecule interactions34CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY35ACKNOWLEDGMENTS35	Carbides	13
Other anhydrous carbonates 28 Hydrous carbonates 31 Minerals incorporating organic molecules 32 Mineral-molecule interactions 34 CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY 35 ACKNOWLEDGMENTS 35	Rhombohedral carbonates	19
Hydrous carbonates 31 Minerals incorporating organic molecules 32 Mineral-molecule interactions 34 CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY 35 ACKNOWLEDGMENTS 35	The aragonite group	27
Minerals incorporating organic molecules	Other anhydrous carbonates	
Mineral-molecule interactions	Hydrous carbonates	31
CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY	Minerals incorporating organic molecules	
ACKNOWLEDGMENTS	Mineral-molecule interactions	34
	CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON MINERALOGY	35
REFERENCES	ACKNOWLEDGMENTS	35
	REFERENCES	

3

Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions

Artem R. Oganov, Russell J. Hemley, Robert M. Hazen, Adrian P. Jones

INTRODUCTION	
THEORETICAL CONSIDERATIONS	
ELEMENTAL CARBON	
Stable phases	
Metastable phases	

Fullerenes at pressure	
Ultrahigh-pressure phases	
CARBIDES	
MOLECULAR FRAMEWORK STRUCTURES	
Carbon dioxide	
Other compounds	61
CARBONATES	63
Behavior of sp ² carbonates	63
High-pressure sp ³ carbonates	64
Silicate carbonates	
CONCLUSIONS	
ACKNOWLEDGMENTS	70
REFERENCES	

Carbon Mineral Evolution

Robert M. Hazen, Robert T. Downs, Linda Kah, Dimitri Sverjensky

INTRODUCTION	79
STAGES OF CARBON MINERAL EVOLUTION	30
The era of Earth's accretion8	31
The era of crust and mantle processing8	33
The era of the evolving biosphere	36
CONCLUSIONS: UNRESOLVED QUESTIONS IN CARBON	
MINERAL EVOLUTION9)6
ACKNOWLEDGMENTS)7
REFERENCES)7

5

The Chemistry of Carbon in Aqueous Fluids at Crustal and Upper-Mantle Conditions: Experimental and Theoretical Constraints

Craig E. Manning, Everett L. Shock, Dimitri A. Sverjensky

INTRODUCTION
Carbon in aqueous fluids of crust and mantle
Sources of carbon in aqueous fluids of the crust and mantle
OXIDIZED CARBON IN AQUEOUS FLUIDS AT HIGH P AND T 112
Aqueous fluids at high P and T
CO ₂ -H ₂ O mixing and miscibility
REDUCED CARBON IN AQUEOUS FLUIDS AT HIGH P AND T 128
CH4 and CO solubility in H2O128
Kinetic inhibition of CH ₄ formation
Reduced carbon and aqueous fluids at high P and T131

CONCLUDING REMARKS	138
ACKNOWLEDGMENTS	138
REFERENCES	138

Primordial Origins of Earth's Carbon

Bernard Marty, Conel M. O'D. Alexander, Sean N. Raymond

INTRODUCTION	149
CARBON IN THE UNIVERSE	
Nucleosynthesis of carbon and stellar evolution	150
Galactic chemical evolution	
Carbon in the interstellar medium and the presolar molecular cloud	
Carbon content and isotopic composition of the solar nebula	
Volatile abundances and isotope compositions in comets	
with special reference to carbon	154
Interplanetary dust particles	
Meteorites	156
The organic matter in chondrites-relationship to IDPs, comets, and ISM	
THE SOLAR SYSTEM: DYNAMICS	159
CLUES TO THE ORIGIN OF CARBON ON EARTH	
Terrestrial carbon inventory	
Volatile (C-H-N-noble gas) elemental and isotopic constraints	
Inferences on the nature of Earth's building blocks	
Is cosmic dust a major source of terrestrial volatiles?	
CARBON TRAPPING IN EARTH	
ACKNOWLEDGEMENTS	
REFERENCES	

Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time

Rajdeep Dasgupta

INTRODUCTION	
CARBON INHERITANCE - MAGMA OCEAN CARBON CYCLE	184
Magma ocean carbon cycle during core formation	
Magma ocean carbon cycle after core formation	191
CARBON RETENTION: MODULATING MANTLE CARBON BUDGET	
THROUGH THE WILSON CYCLE	
Carbon cycle in an ancient Earth with greater thermal vigor:	
an era of more efficient outgassing?	
Inefficient subduction of carbon in the Archean and Proterozoic?	
Carbon ingassing in modern Earth	
Stable forms of carbon in the modern mantle and carbon outgassing	214

CONCLUDING REMARKS	219
ACKNOWLEDGMENTS	220
REFERENCES	220

Carbon in the Core: Its Influence on the Properties of Core and Mantle

8

9

Bernard J. Wood, Jie Li, Anat Shahar

INTRODUCTION	231
CARBON ISOTOPES AND CARBON CONTENT OF THE CORE	233
DENSITY AND PHASE DIAGRAM CONSTRAINTS	
ON THE CARBON CONTENT OF THE CORE	238
The Fe-C phase diagram	238
Densities of iron carbides	
Sound velocities of Fe, Fe ₃ C and those of the inner core	241
CARBON IN THE CORE AND SIDEROPHILE ELEMENTS IN THE MANTLE	243
CONCLUSIONS	245
ACKNOWLEDGMENTS	247
REFERENCES	247

Carbon in Silicate Melts

Huaiwei Ni, Hans Keppler

INTRODUCTION	251
CARBON SOLUBILITY IN SILICATE MELTS	251
CO ₂ solubility in nominally anhydrous melts	252
CO ₂ solubility in hydrous melts	
Solubility of C-O-H fluids under reduced conditions	
CARBON SPECIATION IN SILICATE MELTS	
Spectroscopic information on speciation	
Carbon speciation in silicate glasses	
Equilibrium carbon speciation in silicate melts	274
PHYSICAL PROPERTIES OF CARBON-BEARING SILICATE MELTS	277
Viscosity and electrical conductivity	277
Density and molar volume	
Diffusivity of carbon	
FUTURE DIRECTIONS	
ACKNOWLEDGMENTS	
REFERENCES	

Carbonate Melts and Carbonatites

Adrian P. Jones, Matthew Genge Laura Carmody

INTRODUCTION	
CARBONATE MELTS	
Physical properties	
Atomic structure of carbonate melts	
Carbonate melts as ionic liquids	
Cation electronegativity (χ)	
Speciation	
Carbonate glasses	
Atomic simulation of carbonates	
CARBONATITES	
Occurrence of carbonatites	
Geochemistry of carbonatites	
Carbonatite mineral deposits	
Isotopic signatures of carbonatites	
GENESIS OF CARBONATITE MAGMAS	
Carbonate melt metasomatism	
Carbonate melt crystallization of diamond	
Magmas related to carbonate melts	
FUTURE RESEARCH	
Carbonatites at high-pressure	
Melt structure of tetracarbonates?	
ACKNOWLEDGMENTS	
REFERENCES	

11

Deep Carbon Emissions from Volcanoes

Michael R. Burton, Georgina M. Sawyer, Domenico Granieri

INTRODUCTION: VOLCANIC CO2 EMISSIONS	
IN THE GEOLOGICAL CARBON CYCLE	
Carbon species in Earth degassing	
METHODS FOR MEASURING GEOLOGICAL CO2 EFFLUX	
Ground-based measurements of volcanic plumes	
Volcanic SO ₂ flux measurements	
Airborne measurements of volcanic plumes	
Space-based measurements of volcanic plumes	
Ground-based measurements of diffuse deep CO2	
Diffusive degassing of deep CO ₂ in tectonically active areas	
Submarine measurements	
REPORTED MEASUREMENTS OF DEEP CARBON FLUXES	
REFORTED MEADOREMENTS OF DEEP CHROOTFEDDED.	

.

Subaerial volcanism	
Submarine volcanism	
INVENTORIES OF GLOBAL VOLCANIC DEEP CARBON FLUX:	
IMPLICATIONS FOR THE GEOLOGICAL CARBON CYCLE	
Estimates of global deep carbon emission rates	
Comparison with previous estimates of subaerial volcanic CO2 flux	
Balancing CO ₂ emission rates with weathering and subduction rates	
THE ROLE OF DEEP CARBON IN VOLCANIC ACTIVITY	
Original CO ₂ contents of magma	
Importance of a deep exsolved volatile phase on magma dynamics	
and eruptive style	
MAGNITUDE OF ERUPTIVE DEEP CARBON EMISSIONS	
SUMMARY	
ACKNOWLEDGMENTS	
REFERENCES	

Diamonds and the Geology of Mantle Carbon

12

Steven B. Shirey, Pierre Cartigny, Daniel J. Frost, Shantanu Keshav, Fabrizio Nestola, Paolo Nimis, D. Graham Pearson, Nikolai V. Sobolev, Michael J. Walter

INTRODUCTION TO DIAMOND CHARACTERIST	ICS
Introduction	
Microscale components in diamonds	
Internal textures in diamonds	
DIAMOND FORMATION	
Experimental and thermodynamic constraints of	f growth
in the lithospheric mantle	
Experimental and thermodynamic constraints of	
in the sub-lithospheric mantle	
Stable isotopic compositions and the formation	of diamonds376
INCLUSIONS HOSTED IN DIAMONDS	
Thermobarometry	
Geochemistry and age	
GEOLOGY OF MANTLE CARBON FROM DIAMO	NDS
Geodynamics, carbon mobility and reservoirs	
OUTSTANDING QUESTIONS AND FUTURE WOR	
ACKNOWLEDGMENTS	
REFERENCES	

Nanoprobes for Deep Carbon

Wendy L. Mao, Eglantine Boulard

INTRODUCTION	3
SYNTHESIZING SAMPLES AT HIGH PRESSURES AND TEMPERATURES	3
High pressure	1
High temperature	
Spatial resolution	5
EX SITU TECHNIQUES	
Sample preparation: FIB-SEM	5
Characterization tools	3
IN SITU TECHNIQUES	5
Nanoscale X-ray diffraction430	
X-ray Raman spectroscopy438	
X-ray imaging	
CONCLUSIONS AND OUTLOOK	
REFERENCES	

14 On the Origins of Deep Hydrocarbons

Mark A. Sephton, Robert M. Hazen

INTRODUCTION	449
BIOGENIC ORIGINS OF DEEP HYDROCARBONS	449
Types of hydrocarbons	449
Diagenesis and kerogen formation	
ABIOTIC ORIGINS OF DEEP HYDROCARBONS	
Deep gas theories	451
Thomas Gold and the "Deep Hot Biosphere"	451
Evidence for abiotic hydrocarbon synthesis	452
DETERMINING SOURCE-CHEMICAL EVIDENCE	
Pyrolysis experiments	454
Molecular biomarkers	455
DETERMINING SOURCE-GEOLOGIC EVIDENCE	
Association with temperature and source rocks	457
SELECTED CASE STUDIES	
Mountsorrel, United Kingdom	458
The Songliao Basin, China	459
CONCLUSIONS: UNRESOLVED QUESTIONS IN THE ORIGINS OF	
DEEP HYDROCARBONS	459
ACKNOWLEDGMENTS	
REFERENCES	460

Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth's Deep Subsurface

Thomas M. McCollom

INTRODUCTION	467
ABIOTIC HYDROCARBONS IN EARTH'S UPPER MANTLE.	
The chemical and physical environment of Earth's upper mantle	468
Experimental studies of hydrocarbons at mantle conditions	468
Implications for mantle sources of hydrocarbons	473
ABIOTIC HYDROCARBON FORMATION IN CRUSTAL ENVIRONMENTS	
Chemical and physical environments for hydrocarbon formation in the crust	474
Fischer-Tropsch-type synthesis	476
Alternative pathways for hydrocarbon formation in the crust	
SOME DIRECTIONS FOR FUTURE STUDIES	
ACKNOWLEDGMENTS	490
REFERENCES	490

16

Hydrocarbon Behavior at Nanoscale Interfaces

David R. Cole, Salim Ok, Alberto Striolo, Anh Phan

INTRODUCTION	105
Probing C-O-H behavior with neutron scattering and NMR	
NON-AQUEOUS FLUID ADSORPTION BEHAVIOR: EXPERIMENTAL	499
Background on adsorption concepts and approaches	.499
C-O-H pore fluid densities	501
Hydrocarbon-interfacial microstructure	
NON-AQUEOUS FLUID DYNAMICS AT INTERFACES: EXPERIMENTAL	506
QENS probe of hydrocarbons in nanopores	506
NMR probes of hydrocarbons in nanopores	
Representative NMR studies	
ATOMIC AND MOLECULAR-LEVEL SIMULATIONS	
Properties of confined fluids: do they differ compared to the bulk?	515
Selected simulations of alkanes within alumina and silica-based pores	525
Simulation details	531
SUMMARY AND RECOMMENDATIONS	
ACKNOWLEDGMENTS	535
REFERENCES	

Nature and Extent of the Deep Biosphere

Frederick S. Colwell, Steven D'Hondt

INTRODUCTION	
EARLY STUDIES AND COMPREHENSIVE REVIEWS	
WHERE WE ARE NOW - THE TERROIR OF SUBSURFACE LIFE	
THE TOOLS THAT WE NEED	550
THERE'S NO PLACE LIKE HOME	
IS DIVERSITY THE SPICE OF SUBSURFACE LIFE?	
BIOMASS OF SUBSURFACE LIFE	
PHYSIOLOGICAL PROCESSES OF SUBSURFACE LIFE	558
WHERE AND WHEN DOES LIFE IN THE	
SUBSURFACE REALLY MATTER TO US?	560
PROJECTIONS AND PRIORITIES FOR FUTURE STUDIES	
Imagining how we might sample and visualize deep life	
Unexplored adaptations of subsurface microbes	
Unstudied physiologies and genotypes for the subsurface	
Subsurface coupling of the living and the non-living	
SUMMARY	
ACKNOWLEDGMENTS	
REFERENCES	566

18

Serpentinization, Carbon, and Deep Life

Matthew O. Schrenk, William J. Brazelton, Susan Q. Lang

INTRODUCTION	575
THE PROCESS OF SERPENTINIZATION	575
Physical and chemical consequences of serpentinization	575
Types of serpentinizing habitats	
BIOLOGICAL CONSEQUENCES OF SERPENTINIZATION	
Metabolic strategies in serpentinite-hosted ecosystems	
Challenges of high pH	591
Limitations to carbon fixation	591
Sources of nutrients	593
Microbe-mineral interactions	594
Serpentinization and the origins of life	594
WHERE DOES THE ABIOTIC CARBON CYCLE END AND	
BIOGEOCHEMISTRY BEGIN?	597
Abiogenesis in thermodynamic and experimental studies	597
Distinguishing biotic from abiotic processes	598
Linking abiotic and biological processes	
COMMON THEMES AND UNCHARTED TERRITORY	600
ACKNOWLEDGMENTS	601
REFERENCES	601

High-Pressure Biochemistry and Biophysics

Filip Meersman, Isabelle Daniel, Douglas H. Bartlett, Roland Winter Rachael Hazael, Paul F. McMillan

INTRODUCTION	607
PROTEINS AND POLYPEPTIDES	608
Structures of proteins and polypeptides	608
Thermodynamic considerations: volume versus compressibility argument	nts 609
The protein volume paradox	
Mechanistic aspects of pressure-induced protein unfolding	611
Pressure effects on multimeric proteins and aggregates	
Pressure effects on protein energy landscapes	
From free energy landscapes to P-T phase diagrams	
Kinetic aspects of the phase diagram	
Relevance of biophysical studies on proteins to deep carbon	
NUCLEIC ACIDS	
LIPIDS AND CELL MEMBRANES	
Lamellar lipid bilayer phases	
Lipid mixtures, cholesterol, and peptides	
Nonlamellar lipid phases	
Biological and reconstituted membranes	
Relevance of lipid biophysics for deep carbon	
HIGH-PRESSURE MICROBIOLOGY AND BIOCHEMICAL CYCLES	632
Who's down there?	632
Genomic attributes at depth	634
Metabolism: organic matter, energy and nutrients	
ACQUISITION OF RESISTANCE TO GIGAPASCAL PRESSURES	637
Exploring extreme pressure limits for life	
Acquisition of gigapascal pressure resistance by higher organisms	638
Resistance to extreme shock pressures	639
CONCLUSIONS	640
ACKNOWLEDGMENTS	640
REFERENCES	640

20

The Deep Viriosphere: Assessing the Viral Impact on Microbial Community Dynamics in the Deep Subsurface

Rika E. Anderson, William J. Brazelton, John A. Baross

INTRODUCTION	
DIVERSITY IN THE VIRAL WORLD	
Viral life cycles	
Viral sizes and morphologies	

Genetic diversity	654
VIRAL IMPACTS ON HOST ECOLOGY AND EVOLUTION	
Bottom-up effects: the biogeochemical impact	655
Top-down effects: altering population structure	655
Viral manipulation of genetic content and expression	
VIRAL MANIPULATION OF THE DEEP SUBSURFACE BIOSPHERE	658
Hydrologically active regions of the subsurface	658
Deeply buried sediments	
Viral impacts on surface-attached communities	661
Tools for analysis: viral metagenomics in the deep subsurface	
VENTS, VIRUSES AND THE ORIGIN OF LIFE	
Hydrothermal vents and the deep subsurface: key settings in the origin of	life666
The viral role in the origin of life	
CONCLUSION	
REFERENCES	670